Skip to main content

Part of the book series: Tree Physiology ((TREE,volume 3))

Abstract

Soils of forest ecosystems can function as net sinks or as net sources for atmospheric methane. The exchange of CH4 between soils and the atmosphere is the net-result of simultaneous production of CH4 in predominantly anaerobic zones of the soil and oxidation of CH4 in predominantly oxic zones of the soil, i.e.:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P & Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39: 378–386

    Google Scholar 

  • Aber JD (1992) Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Tree 7: 220–224.

    PubMed  CAS  Google Scholar 

  • Adamsen APS & King G (1993) Methane consumption in temperate and subarctic forest forest soils: Rates, vertical zonation and responses to water and nitrogen. Appl Environ Microbiol 59: 485–490

    PubMed  CAS  Google Scholar 

  • Mm J, Saarnio S, Nykänen H, Silvola J & Martikainen P (1999) Winter CO2, CH4, and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44: 163–186

    Google Scholar 

  • Ambus P & Christensen S (1995) Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystems. J Environ Qual 24: 993–1001

    Article  CAS  Google Scholar 

  • Anderson IC & Poth MA ’(1998) Controls on fluxes of trace gases from Brazilian Cerrado soils. J Environ Qual 27: 1117–1124

    Google Scholar 

  • Aselmann I & Crutzen J P (1988) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8: 307–358

    Article  Google Scholar 

  • Bartlett KB, Crill PM, Sebacher DI, Harriss RC, Wilson JO & Melack JM (1988) Methane flux from the central Amazonian floodplain. J Geophys Res 93: 1571–1582

    Article  CAS  Google Scholar 

  • Bartlett KB, Crill PM, Bonassi JA, Richey JE & Harriss RC (1990) Methane flux from the Amazon river floodplain: emissions during rising water. J Geophys Res 95: 16773–16788

    Article  CAS  Google Scholar 

  • Bender M & Conrad R (1994) Methane oxidation activity in various soils and freshwater sediments: Occurrence, characteristics, vertical profiles, and distribution on grain size fractions. J Geophys Res 99: 16531–16540

    Article  CAS  Google Scholar 

  • Boeckx P, Van Cleemput O, Villaralvo I (1997) Methane oxidation in soils with different textures and land use. Nutr Cycl Agroecosyst 49: 91–95

    Google Scholar 

  • Borken W & Brumme R (1997) Liming practice in temperate forest ecosystems and the effects on CO2, N2O and CH4 fluxes. Soil Use Manage 13: 251–257

    Article  Google Scholar 

  • Born M, Don H & Levin I (1990) Methane concumption in aerated soils of the temperate zone. Tellus 42: 2–8

    Article  Google Scholar 

  • Brumme R & Borken W (1999) Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem. Glob Biogeochem Cycle 13: 493–501

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Papen H & Rennenberg H (1997) Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ 20: 1175–1183

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Gasche R, Huber C, Kreutzer K & Papen H (1998) Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe. Atmos Environ 32: 559–564

    Article  CAS  Google Scholar 

  • Castro MS, Steudler PA, Melillo JM, Aber JD & Millham S (1993) Exchange of N2O and CH4 between the atmosphere and soils in spruce-fir forests in the northeastern United States. Biogeochemistry 18: 119–135

    Article  CAS  Google Scholar 

  • Castro MS, Steudler PA, Melillo JM, Aber JD and Bowden RD (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Glob Biogeochem Cycl 9: 110

    Article  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiol Rev 60: 609–640

    PubMed  CAS  Google Scholar 

  • Crawford RMM (1982) Physiological responses to flooding, In: Lange OL, Nobel PS, Osmond CB & Ziegler H (eds) Encyclopedia of Plant Physiology, Physiological Plant Ecology II, Water relations and carbon assimilation., pp 453–477. Springer Verlag, Berlin, Germany

    Google Scholar 

  • Crill PM, Bartlett KB, Harriss RC, Gorham E, Very ES, Sebacher DI, Madzar L & Sanner W (1988) Methane flux from Minnesota peatlands. Glob Biogeochem Cycle 2: 371–384

    Article  CAS  Google Scholar 

  • Crill PM (1991) Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Glob Biogeochem Cycle 5: 319–334

    Article  CAS  Google Scholar 

  • Czepiel PM, Crill PM & Harriss RC (1995) Environmental factors influencing the variability of methane oxidation in temperate forest soils. J Geophys Res 100: 9359–9364

    Article  CAS  Google Scholar 

  • Delmas RA, Servant J, Tathy JP, Cros B & Labat M (1992) Sources and sinks of methane and carbon dioxide exchanges in mountain forest in Equatorial Africa. J Geophys Res 97: 6169–6179

    Article  CAS  Google Scholar 

  • Devol AH, Richey JE, Clark WA, King SL and Martinelli LA (1988) Methane emissions to the troposphere from the Amazon floodplain. J Geophys Res 93: 1583–1592

    Article  CAS  Google Scholar 

  • Devol AH, Richey JE, Forsberg BR & Martinelli LA (1990) Seasonal dynamics in methane emissions from the Amazon floodplain. J Geophys Res 95: 16417–16426

    Article  CAS  Google Scholar 

  • Dobbie KE, Smith KA, Priemé A, Christensen S, Degorska A & Orlanski P (1996) Effect of land use on the rate of methane uptake by surface soils in Northern Europe. Atmos Environ 30: 1005–1011

    Article  CAS  Google Scholar 

  • Dörr H, Katruff L & Levin I (1993) Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26: 697–713

    Article  Google Scholar 

  • Dong Y, Scharffe D, Lobert JM, Crutzen JP & Sanhueza E (1998) Fluxes of CO2, CH4 and N2O from a temperate forest soil: the effects of leaves and humus layers. Tellus 50B: 243–252

    CAS  Google Scholar 

  • Dunfield P & Knowles R (1995) Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl Environ Microbiol 61: 3129–3135

    PubMed  CAS  Google Scholar 

  • Galchenko VF, Lein A & Ivanov M (1989) Biological sinks of methane. In: Andreae MO & Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp 39–58. John Wiley & Sons Ltd., Chichester, New York, U.S.A.

    Google Scholar 

  • Gilbert B & Frenzel P (1995) Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Biol Fertil Soil 20: 93–100

    Article  CAS  Google Scholar 

  • Gilbert B & Frenzel P (1998) Rice roots and CH4 oxidation: the activity of bacteria, their

    Google Scholar 

  • distribution and the microenvironment. Soil Biol Biochem 30: 1903–1913

    Google Scholar 

  • Gill CJ (1970) The flooding tolerance of woody species — a review. Forest Abstracts 31: 671–688

    Google Scholar 

  • Goldman MB, Groffman PM, Pouyat RV, McDonnell MJ & Pickett ST (1995) CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biol Biochem 27: 281–286

    CAS  Google Scholar 

  • Goreau JT & de Millo WZ (1988) Tropical deforestation: Some effects on atmospheric chemistry. Ambio 17: 275–281

    CAS  Google Scholar 

  • Gulledge J & Schimel JP (1998) Moisture control over atmospheric CH4 consumption and CO2 production in diverse Alaskan soils. Soil Biol Biochem 89: 1127–1132

    Article  Google Scholar 

  • Harriss RC & Sebacher DI (1981) Methane flux in forested freshwater swamps of the southeastern United States. Geophys Res Lett 8: 1002–1004

    Article  CAS  Google Scholar 

  • Harriss RC, Gorham E, Sebacher DI, Bartlett KB & Flebbe PA (1985) Methane flux from northern peatlands. Nature 315: 652–654

    Article  CAS  Google Scholar 

  • Harriss RC, Sebacher DI, Bartlett KB, Bartlett DS & Crill PM (1988) Sources of atmospheric methane in the South Florida environment. Glob Biogeochem Cycle 2: 231–243

    Article  CAS  Google Scholar 

  • Heyer J (1990) Der Kreislauf des Methans, 250 pp.,Akademie Verlag Berlin, Berlin

    Google Scholar 

  • Keller M, Goreau TJ, Wofsy SC, Kaplan WA & McElroy MB (1983) Production of nitrous oxide and consumption of methane by forest soils. Geophys Res Lett 10: 1156–1159

    Article  CAS  Google Scholar 

  • Keller M, Kaplan WA & Wofsy SC 1986 Emission of N2O, CH4, and CO2 from tropical forest soils. J Geophys Res 91: 11791–11802

    Article  CAS  Google Scholar 

  • Keller M, Veldkamp E, Weitz AM and Reiners WA (1993) Effect of pasture age on soil trace-gas emissions from a deforested area of Costa Rica. Nature 365: 244–246

    Article  CAS  Google Scholar 

  • Keller M & Reiners WA (1994) Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob Biogeochem Cycle 8: 399–409

    Article  CAS  Google Scholar 

  • King GM & Schnell S (1994a) Enhanced ammonium inhibition of methane consumption in forest soils by increasing atmospheric methane. Nature 370: 282–284

    Article  CAS  Google Scholar 

  • King GM & Schnell S (1994b) Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Appl Environ Microbiol 60: 3508–3513

    PubMed  CAS  Google Scholar 

  • King GM & Schnell S (1998) Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichospirium OB3b and Maine forest soils. Appl Environ Microbiol 64: 253–257

    PubMed  CAS  Google Scholar 

  • Kludze HK, Pezeshkl SR & Delaune RD (1994) Evaluation of root oxygenation and growth in baldcypress in response to short-term soil hypoxia. Can J For Res 24: 804–809

    Article  Google Scholar 

  • Klemedtsson AK & Klemedtsson L (1997) Methane uptake in Swedish forest soil in relation to liming and extra N-deposition. Biol Fertil Soil 25: 296–301

    Article  CAS  Google Scholar 

  • Knowles R (1993) Methane: processes of production and consumption. In: Harper LA, Mosier AR, Duxbury JM & Rolston DE (eds) Agricultural Ecosystem Effects of Trace Gases and Global Climate Change, pp 145–165. ASA Special Publication 55, American Society of Agronomy, Madison, U.S.A.

    Google Scholar 

  • Macdonald JA, Skiba U, Sheppard L, Hargreaves KJ, Smith KA & Fowler D (1996) Soil environmental variables affecting the flux of methane from a range of forest, moorland and agricultural soils. Biogeochem 34: 113–132

    Article  CAS  Google Scholar 

  • MacDonald JA, Skiba U, Sheppard LJ, Ball B, Roberts JD, Smith KA & Fowler D (1997) The effect of nitrogen deposition and seasonal variability on methane oxidation and nitrous oxide emission rates in an upland spruce plantation and moorland. Atmos Environ 31: 3693–3706

    Article  CAS  Google Scholar 

  • MacDonald JA, Eggleton P, Bignell DE, Forzi F & Fowler D (1998) Methane emission by termites and oxidation by soils, across a forest disturbance gradient in the Mbalmayo forest reserve, Cameroon. Glob Change Biol 4: 409–418

    Google Scholar 

  • Martikainen Pi, Nykänen H, Mm J & Silvola J (1995) Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant Soil 168–169: 571–577

    Article  CAS  Google Scholar 

  • Moore TR, Roulet N & Knowles R (1990) Spatial and temporal variations of methane flux from subarctic/ northern boreal fens. Glob Biogeochem Cycle 4: 29–46

    Article  CAS  Google Scholar 

  • Ojima DS, Valentine DW, Mosier AR, Parton WJ & Schimel DS (1993) Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere 26: 675–685

    Article  CAS  Google Scholar 

  • Papen H & Butterbach-Bahl K (1999) A 3-years continuous record of N-trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: 1. N20-emissions. J Geophys Res 104: 18487–18503

    Article  CAS  Google Scholar 

  • Priemé A & Christensen S (1997) Seasonal and spatial variation of methane oxidation in a Danish spruce forest. Soil Biol Biochem 29: 1165–1172

    Article  Google Scholar 

  • Roulet NT, Ash R & Moore TR (1992) Low boreal wetlands as a source of atmospheric methane. J Geophys Res 97: 3739–3749

    Article  CAS  Google Scholar 

  • Rusch H & Rennenberg H (1998) Black alder (Alnus Glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant Soil 201: 1–7

    Article  CAS  Google Scholar 

  • Saari A, Heiskanen J & Martikainen PJ (1998) Effect of the organic horizon on methane oxidation and uptake in soil of a boreal Scots pine forest. FEMS Microbiol Ecol 26: 245255

    Google Scholar 

  • Schimel JP, Holland EA & Valentine D (1993) Controls on methane flux from terrestrial ecosystems. In: Harper LA, Mosier AR, Duxbury JM & Rolston DE (eds) Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, pp 167–182. ASA Special Publication 55, American Society of Agronomy, Madison, U.S.A.

    Google Scholar 

  • Scholander PF, Van Dam L & Scholander SI (1955) Gas exchange in the roots of mangroves. Am J Bot 42: 92–98

    Article  CAS  Google Scholar 

  • Schröder P (1989) Characterisation of a thermo-osmotic gas transport mechanism in Alnus glutinosa (L.) Gaertn. Trees 3: 38–44

    Article  Google Scholar 

  • Schnell S & King GM (1996) Responses of methanotrophic activity in soils and cultures to water stress. Appl Environ Microbiol 62: 3203–3209

    PubMed  CAS  Google Scholar 

  • Schütz H, Schröder P & Rennenberg H (1991) Role of plants in regulating the methane flux to the atmosphere. In: Sharkey TD, Holland EA & Mooney HA (eds) Trace Gas Emissions by Plants, pp 29–63. Academic Press, San Diego, U.S.A.

    Chapter  Google Scholar 

  • Seiler W, Conrad R & Scharffe D (1984) Field studies of methane emission from termite nests into the atmosphere and measurement of methane uptake by tropical forest soils. J Atmos Chem 1: 171–186

    Article  CAS  Google Scholar 

  • Sexstone AJ & Mains CN (1990) Production of CH4 and ethylene in organic horizons of spruce forest soils. Soil Biol Biochem 22: 135–139

    Google Scholar 

  • Singh JS, Raghubanshi AS, Reddy VS, Dingh S & Kashyap AK (1998) Methane flux from irrigated paddy and dryland rice fields, and from seasonally dry tropical forest and savanna soils of India. Soil Biol Biochem 30: 135–139

    Article  CAS  Google Scholar 

  • Sitaula BK, Bakken LR & Abrahamsen G (1995) CH4 uptake by temperate forest soil: effect of N input and soil acidification. Soil Biol Biochem 27: 871–880

    CAS  Google Scholar 

  • Steudler PA, Bowden RD, Melillo J M & Aber JD (1989) Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341: 314–316

    Article  Google Scholar 

  • Steinkamp R, Butterbach-Bahl K & Papen H (2001) CH4 oxidation by soils of a N limited and N fertilized spruce forest soils in the Black Forest, Germany. Soil Biol Biochem 331: 145–153

    Google Scholar 

  • Tathy JP, Delmas RA, Marenco A, Gros B, Labat M & Servant J (1992) Methane emission from flooded forest in Central Africa, J Geophys Res 97: 6159–6168

    Article  CAS  Google Scholar 

  • Topa MA & McLeod KW 1986 Aerenchyma and lenticel formation in pine seedlings: a possible avoidance mechanism to anaerobic growth conditions. Physiol Plant 68: 540–550

    Article  Google Scholar 

  • Wassmann R, Thein UG, Whiticar MJ, Rennenberg H, Seiler W & Junk WJ (1992) Methane emissions from the Amazon floodplain: characterization of production and transport. Glob Biogeochem Cycle 6: 3–13

    Article  CAS  Google Scholar 

  • Whalen SC & Reeburgh WS (1990) A methane flux transect along the trans-Alaska pipeline haul road. Tellus 42B: 237–249

    Google Scholar 

  • Whalen SC, Reeburgh WS and Kizer KA (1991) Methane consumption and emission by taiga. Glob Biogeochem Cycle 5: 261–273

    Article  CAS  Google Scholar 

  • Whiting GJ & Chanton JP (1992) Plant-dependent CH4 emission in a subarctic Canadian fen. Glob Biogeochem Cycl 6: 225–231

    Article  CAS  Google Scholar 

  • Weitz AM, Veldkamp E, Keller M, Neff J & Crill PM (1998) Nitrous oxide, nitric oxide, and methane fluxes from soils following clearing and burning of tropical secondary forest. J Geophys Res 103: 28047–28058

    Article  CAS  Google Scholar 

  • Yavitt JB, Lang GE & Sexstone AJ (1990a) Methane fluxes in wetland and forest soils, beaver ponds and low-order streams of a temperate forest ecosystem. J Geophys Res 95: 22463–22474

    Article  CAS  Google Scholar 

  • Yavitt JB, Downey DM, Lang GE & Sexstone AJ (1990b) Methane consumption in two temperate forest soils. Biogeochem 9: 39–52

    Article  CAS  Google Scholar 

  • Yavitt JB, Fahey TJ & Simmons JA (1995) Methane and carbon dioxide dynamics in a northern hardwood ecosystem. Soil Sci Soc Am J 59: 796–804

    Article  CAS  Google Scholar 

  • Zeikus JG & Henning DL (1975) Methanobacterium arbophilicum sp. nov. An obligate

    Google Scholar 

  • anaerobe isolated from wetwood living trees. Antonie van Leeuwenhoek 41: 543–552

    Google Scholar 

  • Zeikus JG & Ward JC (1974) Methane formation in living trees: A microbial origin. Science 184: 1181–1183

    Article  PubMed  CAS  Google Scholar 

  • Zepp RG, Miller WL, Burke RA, Parsons DAB & Scholes MC (1996) Effects of moisture and burning on soil-atmosphere exchange of trace gases in a southern African savanna. J Geophys Res 101: 23699–23706

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Butterbach-Bahl, K. (2002). CH4 . In: Gasche, R., Papen, H., Rennenberg, H. (eds) Trace Gas Exchange in Forest Ecosystems. Tree Physiology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9856-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9856-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6214-7

  • Online ISBN: 978-94-015-9856-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics