Skip to main content

Methods for Measuring Cold Hardiness of Conifers

  • Chapter
Conifer Cold Hardiness

Part of the book series: Tree Physiology ((TREE,volume 1))

Abstract

Cold hardiness testing methods have developed from the search to understand the many thermodynamic, physiological, anatomical, and biochemical features of plants involved in acclimation and deacclimation to freezing temperatures. These methods have further evolved from a need to quickly monitor cold hardiness to ensure successful production of conifer nursery stock for reforestation. Cold hardiness is measured by exposing plant tissue to controlled freezing temperatures, then quantifying tissue damage by one or more methods. Adherence to well-defined, standardised testing protocols and evaluation methods is key to our ability to accurately estimate cold hardiness and compare data from different testing methods or times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackmann, J.J., and Seitz, M.A. 1984. Methods of complex impedance measurements in biological tissue. CRC Crit. Rev. Biomed. Eng. 11: 281–311.

    CAS  Google Scholar 

  • Aitken, S.N., and Adams, W.T. 1997. Spring cold hardiness under strong genetic control in Oregon populations of Pseudotsuga menziesii var. menziesii. Can. J. For. Res. 27: 1773–1780.

    Article  Google Scholar 

  • Aitken, S.N., Adams, W.T., Schermann, N., and Fuchigami, L.H. 1996. Family variation for fall cold hardiness in two Washington populations of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco). For. Ecol. Manage. 80: 187–195.

    Article  Google Scholar 

  • Andrews, P.K., Proebsting, E.L. Jr., and Lee, G.S. 1987. A conceptual model of the changes in deep supercooling of dormant sweet cherry flower buds. J. Am. Hortic. Soc. 112: 320–324.

    Google Scholar 

  • Aronsson, A., and Eliasson, L. 1970. Frost hardiness in Scots pine (Pinus sylvestris L.). I. Conditions for test on hardy plant tissues and for evaluation of injuries by conductivity measurements. Stud. For. Suec. 77: 1–30.

    Google Scholar 

  • Aronsson, A., Ingestad, T., and Lööf, L.-G. 1976. Carbohydrate metabolism and frost hardiness in pine and spruce seedlings grown at different photoperiods and thermoperiods. Physiol. Plant. 36: 127–132.

    Article  CAS  Google Scholar 

  • Ashworth, E.N. 1992. Formation and spread of ice in plant tissues. Hortic. Rev. 13: 215–255.

    Google Scholar 

  • Ashworth, E.N. 1993. Deep supercooling in woody plant tissues. In Advances in Plant Cold Hardiness. Edited by P.H. Li and L. Christersson. CRC Press, Boca Raton, FL. pp. 203–213.

    Google Scholar 

  • Ashworth, E.N., Davis, G.A., and Wisniewski, M.E. 1989. The formation and distribution of ice within dormant and deacclimated peach flower buds. Plant Cell Environ. 12: 521–528.

    Article  Google Scholar 

  • Becwar, M.R., Rajashekar, C., Hansen Bristow, K.J., and Burke, M.J. 1981. Deep undercooling of tissue water and winter hardiness limitations in timberline flora. Plant Physiol. 68: 111–114.

    Article  PubMed  CAS  Google Scholar 

  • Bigras, F.J. 1997. Root cold tolerance of black spruce seedlings: viability tests in relation to survival and regrowth. Tree Physiol. 17: 311–318.

    Article  PubMed  Google Scholar 

  • Bigras, F.J. 1998. Field performance of containerized black spruce seedlings with root systems damaged by freezing or pruning. New. For. 15: 1–9.

    Article  Google Scholar 

  • Bigras, F.J., and Hébert, C. 1996. Freezing temperatures and exposure times during bud break and shoot elongation influence survival and growth of containerized black spruce (Picea mariana) seedlings. Can. J. For. Res. 26: 1481–1489.

    Article  Google Scholar 

  • Binder, W.D., and Fielder, P. 1996a. Seasonal changes in chlorophyll fluorescence of white spruce seedlings from different latitudes in relation to gas exchange and winter storability. New For. 11: 207–232.

    Google Scholar 

  • Binder, W.D. and Fielder, P. 1996b. Chlorophyll fluorescence as an indicator of frost hardiness in white spruce seedlings from different latitudes. New. For. 11: 233–253.

    Google Scholar 

  • Binder, W.D., Fielder, P., Mohammed, G.H., and L’Hirondelle, S.J. 1997. Applications of chlorophyll fluorescence for stock quality assessment with different types of fluorometers. New For. 13: 63–89.

    Article  Google Scholar 

  • Bolhàr-Nordenkampf, H.R., Long, S.P., Baker, N.R., Öquist, G., Schreiber, U., and Lechner, E.G. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct. Ecol. 3: 497–514.

    Article  Google Scholar 

  • Burke, M.J., Gusta, L.V., Quamme, H.A., Weiser, C.J., and Li, P.H. 1976. Freezing and injury in plants. Annu. Rev. Plant. Physiol. 27: 507–528.

    Article  Google Scholar 

  • Burr, K.E. 1990. The target seedling concepts: bud dormancy and cold hardiness. In Target seedling symposium. Proceedings of the Combined Meeting of the Western Forest Nursery Associations, 13–17 Aug., Roseburg, Oregon. Edited by R. Rose, S.J. Campbell, and T.D. Landis. USDA For. Serv. Gen. Tech. Rep. RM-200. pp. 79–90.

    Google Scholar 

  • Burr, K.E., Tinus, R.W., Wallner, S.J., and King, R.M. 1990. Comparison of three cold hardiness tests for conifer seedlings. Tree Physiol. 6: 351–369.

    Article  PubMed  Google Scholar 

  • Calkins, J.B., and Swanson, B.T. 1990. The distinction between living and dead plant tissue–viability tests in cold hardiness research. Cryobiology, 27: 194–211.

    Article  Google Scholar 

  • Coleman, M.D., Hinckley, T.M., McNaughton, G., and Smit, B.A. 1992. Root cold hardiness and native distribution of subalpine conifers. Can. J. For. Res. 22: 932–938.

    Article  Google Scholar 

  • Colombo, S.J., Webb, D.P., and Glerum, C. 1984. Frost hardiness testing: an operational manual for use with extended greenhouse culture. Ont. Minist. Nat. Res. For. Res. Rep. No. 110.

    Google Scholar 

  • Colombo, S.J., Zhao, S., and Blumwald, E. 1995. Frost hardiness gradients in shoots and roots of Picea mariana seedlings. Scand. J. For. Res. 10: 32–36.

    Article  Google Scholar 

  • Deans, J.D., Billington, H.L., and Harvey, F.J. 1995. Assessment of frost damage to leafless stem tissues of Quercus petraea: a reappraisal of the method of relative conductivity. Forestry, 68: 25–34.

    Article  Google Scholar 

  • DeHayes, D.H., and Williams, M.W. Jr. 1989. Critical temperature: a quantitative method of assessing cold tolerance. USDA For. Sew. Gen. Tech. Rep. NE-134.

    Google Scholar 

  • DeHayes, D.H., Waite, C.E., and Ingle, M.A. 1990. Storage temperature and duration influence cold tolerance of red spruce foliage. For. Sci. 36: 1153–1158.

    Google Scholar 

  • Dexter, S.T., Tottingham, W.E., and Graber, L.F. 1932. Investigations of the hardiness of plants by measurement of electrical conductivity. Plant Physiol. 7: 63–78.

    Article  PubMed  CAS  Google Scholar 

  • Flinn, C.L., and Ashworth, E.N. 1994. Seasonal changes in ice distribution and xylem development in blueberry flower buds. J. Am. Soc. Hortic. Sci. 119: 1176–1184.

    Google Scholar 

  • Flint, H.L., Boyce, B.R., and Beattie, D.J. 1967. Index of injury–a useful expression of freezing injury to plant tissues as determined by the electrolytic method. Can. J. Plant Sci. 47: 229–230.

    Article  Google Scholar 

  • Foster, K.R., and Schwan, H.P. 1989. Dielectric properties of tissues and biological materials: a critical review. CRC Crit. Rev. Biomed. Eng. 17: 25–104.

    CAS  Google Scholar 

  • Fowler, D., Cape, J.N., Deans, J.D., Leith, I.D., Murray, M.B., Smith, R.I., Sheppard, L.J., and Unsworth, M.H. 1989. Effects of acid mist on the frost hardiness of red spruce seedlings. New Phytol. 113: 321–335.

    Article  CAS  Google Scholar 

  • George, M.F. 1982. Freezing avoidance by supercooling of tissue water in vegetative and reproductive structures of Juniperus virginiana. In Plant cold hardiness and freezing stress. Vol. 2. Edited by P.H. Li and A. Sakai. Academic Press, Inc., New York. pp. 367–377.

    Google Scholar 

  • George, M.F., and Burke, M.J. 1977. Cold hardiness and deep supercooling in xylem of shagbark hickory. Plant Physiol. 59: 319–325.

    Article  PubMed  CAS  Google Scholar 

  • George, M.F., and Burke, M.J. 1986. Low temperature: physical aspects of freezing in woody plant xylem. In Stress physiology and forest productivity. Edited by T.C. Hennessey, P.M. Dougherty, S.V. Kossuth, and J.D. Johnson. Martinus Nijoff Publishers, The Hague. pp. 133–150.

    Google Scholar 

  • Gillies, S.L., and Binder, W.D. 1997. The effect of sub-zero temperatures in the light and dark on cold-hardened, dehardened and newly flushed white spruce (Picea glauca [Moench.] Voss) seedlings. New For. 13: 91–104.

    Article  Google Scholar 

  • Glerum, C. 1985. Frost hardiness of coniferous seedlings: principles and applications. In Evaluating seedling quality: principles, procedures, and predictive abilities of major tests. Edited by M.L. Duryea. Forest Research Laboratory, Oregon State University, Corvallis, OR, USA. pp. 107–123.

    Google Scholar 

  • Govindjee. 1995. Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust. J. Plant Physiol. 22: 131–160.

    Google Scholar 

  • Hawkins, C.D.B., and Binder, W.D. 1990. State of the art seedling stock quality tests based on seedling physiology. In Target seedling symposium. Proceedings of the Combined Meeting of the Western Forest Nursery Associations, 13–17 Aug., Roseburg, Oregon. Edited by R. Rose, S.J. Campbell, and T.D. Landis. USDA For. Serv. Gen. Tech. Rep. RM-200. pp. 91–121.

    Google Scholar 

  • Hawkins, C.D.B., Eastham, A.M., Story, T.L., Eng, R.Y.N., and Draper, D.A. 1996. The effect of nursery blackout application on Sitka spruce seedlings. Can. J. For. Res. 26: 2201–2213.

    Article  Google Scholar 

  • Hong, S.-G., and Sucoff, E. 1980. Units of freezing of deep supercooled water in woody xylem. Plant Physiol. 66: 40–45.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S.-G., and Sucoff, E. 1982. Temperature effects on acclimation and deacclimation of supercooling in apple xylem. In Plant cold hardiness and freezing stress. Vol. 2. Edited by P.H. Li and A. Sakai. Academic Press, Inc., New York. pp. 341–356.

    Google Scholar 

  • Hong, S.-G., Sucoff, E., and Lee-Stadelmann, O.Y. 1980. Effect of freezing deep supercooled water on the viability of ray cells. Bot. Gaz. 141: 464–468.

    Article  Google Scholar 

  • Hurme, P., Repo, T., Savolainen, O., and Pääkkönen, T. 1997. Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Can. J. For. Res. 27: 716–723.

    Article  Google Scholar 

  • Keates, S.E. 1990. Assessing cold hardiness in conifers: a problem analysis and discussion paper. FRDA Rep. No. 106. For. Can. B.C. Minist. For., Victoria, B.C.

    Google Scholar 

  • Krause, G.H., and Somersalo, S. 1989. Fluorescence as a tool in photosynthesis research: application in studies of photoinhibition, cold acclimation and freezing stress. Philos. Trans. R. Soc. Lond. Ser. B (Biol. Sci.), 323: 281–293.

    Article  CAS  Google Scholar 

  • Krause, G.H., and Weis, E. 1984. Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth. Res. 5: 139–157.

    Article  CAS  Google Scholar 

  • Krause, G.H., and Weis, E. 1988. The photosynthetic apparatus and chlorophyll fluorescence. In Applications of chlorophyll fluorescence. Edited by H.K. Lichtenthaler. Kluwer Academic Publishers, Dordrecht. pp. 3–11.

    Google Scholar 

  • Letchford, T. 1989. Good temperature control during frost hardiness testing is desirable and affordable. FRDA Res. Memo. No. 127. For. Can. B.C. Minist. For., Victoria, B.C.

    Google Scholar 

  • Levitt, J. 1980. Responses of plants to environmental stresses. Vol. 1. 2nd ed. Academic Press, Inc., New York.

    Google Scholar 

  • Lichtenthaler, H.K (editor). 1988. Applications of chlorophyll fluorescence. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Lichtenthaler, H.K., and Rinderle, U. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit. Rev. Anal. Chem. 19 (Supplement 1): 529–585.

    Google Scholar 

  • Lin, C.H., and George, M.F. 1998. The effects of intracellular solute concentration on freezing avoidance by supercooling–a theoretical freezing model for woody plant cells. Q. J. Chin. For. 31: 131–140.

    Google Scholar 

  • Lindström, A., and Mattsson, A. 1989. Equipment for freezing roots and its use to test cold resistance of young and mature roots of Picea abies seedlings. Scand. J. For. Res. 4: 59–66.

    Article  Google Scholar 

  • Macdonald, J.R. 1987. Impedance spectroscopy. John Wiley Sons, Inc., New York. Macdonald, J.R. 1992. Impedance spectroscopy. Ann. Biomed. Eng. 20: 289–305.

    Google Scholar 

  • Manter, D.K., and Livingston, W.H. 1996. Influence of thawing rate and fungal infection by Rhizosphaera kalkhofi on freezing injury in red spruce (Picea rubens) needles. Can J. For. Res. 26: 918–927.

    Google Scholar 

  • McEvoy, C., and McKay, H. 1997. Root frost hardiness of amenity broadleaved seedlings. Arboric. J. 21: 231–244.

    Article  Google Scholar 

  • McKay, H.M. 1994. Frost hardiness and cold-storage tolerance of the root system of Picea sitchensis, Pseudotsuga menziesii, Larix kaempferi and Pinus sylvestris bare-root seedlings. Scand. J. For. Res. 9: 203–213.

    Article  Google Scholar 

  • Mohammed, G.H., Binder, W.D., and Gillies, S.L. 1995. Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation. Scand. J. For. Res. 10: 383–410.

    Article  Google Scholar 

  • Murray, M.B., Cape, J.N., and Fowler, D. 1989. Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol. 113: 307–311.

    Article  Google Scholar 

  • Odium, K.D., and Blake, T.J. 1996. A comparison of analytical approaches for assessing freezing damage in black spruce using electrolyte leakage methods. Can. J. Bot. 74: 952–958.

    Article  Google Scholar 

  • Öquist, G., and Malmberg, G. 1989. Light and temperature dependent inhibition of photosynthesis in frost-hardened and un-hardened seedlings of pine. Photosynth. Res. 20: 261–267.

    Google Scholar 

  • Örlander, G. 1993. Shading reduces both visible and invisible frost damage to Norway spruce seedlings in the field. Forestry, 66: 27–36.

    Article  Google Scholar 

  • Prasil, I., and Zamecnik, J. 1990. Time course of electrolyte leakage from various samples killed by frost, liquid nitrogen or boiling. Biol. Plant. 32: 77–80.

    Article  Google Scholar 

  • Pukacki, P., and Pukacka, S. 1987. Freezing stress and membrane injury of Norway spruce (Picea abies) tissues. Physiol. Plant. 69: 156–160.

    Article  CAS  Google Scholar 

  • Quamme, H., Stushnoff, C., and Weiser, C.J. 1972. The relationship of exotherms to cold injury in apple stem tissues. J. Am. Soc. Hortic. Sci. 97: 608–613.

    Google Scholar 

  • Rasmussen, D.H., and MacKenzie, A.P. 1972. Effect of solute on ice-solution free energy: calculation from measured homogeneous nucleation temperatures. In Water structure at the water polymer interface. Edited by H.H.G. Jellinek. Plenum Publishing Corporation, New York. pp. 126–145.

    Google Scholar 

  • Repo, T. 1993. Impedance spectroscopy and temperature acclimation of forest trees. University of Joensuu, Faculty of Forestry, Res. Notes 9.

    Google Scholar 

  • Repo, T. 1994. Influence of different electrodes and tissues on the impedance spectra of Scots pine shoots. Electro- Magnetobiol. 13: 1–14.

    Google Scholar 

  • Repo, T., and Lappi, J. 1989. Estimation of standard error of impedance-estimated frost resistance. Scand. J. For. Res. 4: 67–74.

    Article  Google Scholar 

  • Repo, T., and Zhang, M.I.N. 1993. Modelling woody plant tissues using a distributed electrical circuit. J. Exp. Bot. 44: 977–982.

    Article  Google Scholar 

  • Repo, T., Zhang, M.I.N., Ryyppö, A., Vapaavuori, E., and Sutinen, S. 1994. Effects of freeze-thaw injury on parameters of distributed electrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation. J. Exp. Bot. 45: 823–833.

    Article  Google Scholar 

  • Repo, T., Leinonen, M., and Pääkkönen, T. 1995. The application of electrical impedance spectroscopy in assessing the frost hardiness of Scots pine. In Proceedings of the 9th International Conference on Electrical Bio-Impedance, 26–30 Sept., Heidelberg, Germany. Edited by E. Gersing and M. Schaefer. pp. 370–373.

    Google Scholar 

  • Repo, T., Leinonen, M., and Pääkkönen, T. 1997. Electrical impedance analysis of shoots of Scots pine: intracellular resistance correlates with frost hardiness. In Proceedings of the Finnish-Japanese Workshop on Molecular and Physiological Aspects of Cold and Chilling Tolerance of Northern Crops, 17–20 March, Jokioinen, Finland. pp. 27–30.

    Google Scholar 

  • Repo, T., Zhang, G., Ryyppö, A., Rikala, R., and Vuorinen, M. 2000a. The relation between growth cessation and frost hardening in Scots pines of different origins. Trees. (In press).

    Google Scholar 

  • Repo, T., Zhang, G., Ryyppö, A., and Rikala, R. 2000b. The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation. J. Exp. Bot. (In press).

    Google Scholar 

  • Ritchie, G.A. 1984. Assessing seedling quality. In Forest nursery manual: production of bareroot seedlings. Edited by M.L. Duryea and T.D. Landis. Martinus Nijhoff/Dr W. Junk Publishers, The Hague. pp. 243–259.

    Google Scholar 

  • Ritchie, G.A. 1990. A rapid method for detecting cold injury in conifer seedling root systems. Can. J. For. Res. 20: 26–30.

    Article  Google Scholar 

  • Ritchie, G.A. 1991. Measuring cold hardiness. In Techniques and approaches in forest tree ecophysiology. Edited by J.P. Lassoie and T.M. Hinckley. CRC Press, Boca Raton, FL. pp. 557–582.

    Google Scholar 

  • Robotham, R.W., Lloyd, J., and Warrington, I.J. 1978. A controlled environment room for producing advective white or black frost conditions. J. Agric. Eng. Res. 23: 301–311.

    Article  Google Scholar 

  • Ryyppö, A., Repo, T., and Vapaavuori, E. 1998. Development of freezing tolerance in roots and shoots of Scots pine seedlings at nonfreezing temperatures. Can. J. For. Res. 28: 557–565.

    Article  Google Scholar 

  • Sakai, A. 1978. Low temperature exotherms of winter buds of hardy conifers. Plant Cell Physiol. 19: 1439–1446.

    Google Scholar 

  • Sakai, A. 1982a. Freezing tolerance of shoot and flower primordia of coniferous buds by extraorgan freezing. Plant Cell Physiol. 23: 1219–1227.

    Google Scholar 

  • Sakai, A. 1982b. Extraorgan freezing of primordial shoots of winter buds of conifer. In Plant cold hardiness and freezing stress. Vol. 2. Edited by P.H. Li and A. Sakai. Academic Press, Inc., New York. pp. 199–209.

    Google Scholar 

  • Sakai, A., and Larcher, W. 1987. Frost survival of plants. Responses and adaptation to freezing stress. Ecological Studies Vol. 62. Springer-Verlag, Berlin.

    Google Scholar 

  • Schwan, H.P. 1957. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5: 147–209.

    PubMed  CAS  Google Scholar 

  • Schwan, H.P., and Takashima, S. 1991. Dielectric behaviour of biological cells and membranes. Bull. Inst. Chem. Res. Kyoto Univ. 69: 459–475.

    CAS  Google Scholar 

  • Sheppard, L.J., Franssen, I., and Cape, J.N. 1995. Frost hardiness of Norway spruce treated with acid mist. Evaluation of the electrolyte leakage rate technique. Environ. Exp. Bot. 35: 139–149.

    Article  CAS  Google Scholar 

  • Sheppard, L.J., Leith, I.D., Morris, E., Cape, J.N., and Roberts, D. 1997. Open-top chamber and field exposure of Sitka spruce to simulated acid mist: a comparison of results. Environ. Pollut. 98: 185–194.

    Article  CAS  Google Scholar 

  • Simpson, D.G. 1990. Frost hardiness, root growth capacity, and field performance relationships in interior spruce, lodgepole pine, Douglas-fir, and western hemlock seedlings. Can. J. For. Res. 20: 566–572.

    Article  Google Scholar 

  • Simpson, D.G. 1994. Seasonal and geographic origin effects on cold hardiness of white spruce buds, foliage, and stems. Can. J. For. Res. 24: 1066–1070.

    Article  Google Scholar 

  • Steponkus, P.L. 1984. Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35: 543–584.

    Article  CAS  Google Scholar 

  • Stergios, B.G., and Howell, G.S. Jr. 1973. Evaluation of viability tests for cold stressed plants. J. Am. Soc. Hortic. Sci. 98: 325–330.

    Google Scholar 

  • Strand, M., and Öquist, G. 1988. Effects of frost hardening, dehardening and freezing stress on in vivo chlorophyll fluorescence in seedlings of Scots pine (Pinus sylvestris L.). Plant Cell Environ. 11: 231–238.

    Article  CAS  Google Scholar 

  • Sundbom, E., and Öquist, G. 1982. Temperature-induced changes of variable fluorescence-yield in intact leaves. Plant Cell Physiol. 23: 1161–1167.

    Google Scholar 

  • Sutinen, M.-L., Palta, J.P., and Reich, P.B. 1992. Seasonal differences in freezing stress resistance of needles of Pinus nigra and Pinus resinosa: evaluation of the electrolyte leakage method. Tree Physiol. 11: 241–254.

    Article  PubMed  Google Scholar 

  • Tanaka, Y., Brotherton, P., Hostetter, S., Chapman, D., Dyce, S., Belanger, J., Johnson, B., and Duke, S. 1997. The operational planting stock quality testing program at Weyerhaeuser. New For. 13: 423–437.

    Article  Google Scholar 

  • Timmis, R. 1976. Methods of screening tree seedlings for frost hardiness. In Tree physiology and yield improvement. Edited by M.G.R. Cannell and F.T. Last. Academic Press Limited, London. pp. 421–435.

    Google Scholar 

  • Tinus, R.W., Bourque, J.E., and Wallner, S.J. 1985. Estimation of cold hardiness of Douglas-fir and Engelmann spruce seedlings by differential thermal analysis of buds. Ann. Appl. Biol. 106: 393–397.

    Article  Google Scholar 

  • van den Driessche, R. 1976. Prediction of cold hardiness in Douglas fir seedlings by index of injury and conductivity methods. Can. J. For. Res. 6: 511–515.

    Article  Google Scholar 

  • Vidaver, W., Binder, W., Brooke, R.C., Lister, G.R., and Toivonen, P.M.A. 1989. Assessment of photosynthetic activity of nursery-grown Picea glauca seedlings using an integrating fluorometer to monitor variable chlorophyll fluorescence. Can. J. For. Res. 19: 1478–1482.

    Article  Google Scholar 

  • Vidaver, W.E., Lister, G.R., Brooke, R.C., and Binder, W.D. 1991. A manual for the use of variable chlorophyll fluorescence in the assessment of the ecophysiology of conifer seedlings. FRDA Rep. No. 163. For. Can. B.C. Minist. For., Victoria, B.C.

    Google Scholar 

  • Warmund, M.R., George, M.F., and Cumbie, B.G. 1988. Supercooling in `Darrow’ blackberry buds. J. Am. Soc. Hortic. Sci. 113: 418–422.

    Google Scholar 

  • Whitlow, T.H., Bassuk, N.L., Ranney, T.G., and Reichert, D.L. 1992. An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol. 98: 198–205.

    Article  PubMed  CAS  Google Scholar 

  • Wilner, J., and Brach, E.J. 1979. Utilization of bioelectric tests in biological research. Eng. Stat. Res. Instit. Rep. 1–139.

    Google Scholar 

  • Wunderlich, B. 1990. Thermal analysis. Academic Press, Inc., New York.

    Google Scholar 

  • Zhang, M.I.N., and Willison, J.H.M. 1991. Electrical impedance analysis in plant tissues: a double shell model. J. Exp. Bot. 42: 1465–1475.

    Article  Google Scholar 

  • Zhang, M.I.N., and Willison, J.H.M. 1992a. Electrical impedance analysis in plant tissues: the effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Can. J. Plant Sci. 72: 545–553.

    Article  Google Scholar 

  • Zhang, M.I.N., and Willison, J.H.M. 1992b. Electrical impedance analysis in plant tissues: in vivo detection of freezing injury. Can. J. Bot. 70: 2254–2258.

    Article  Google Scholar 

  • Zhang, M.I.N., Willison, J.H.M., Cox, M.A., and Hall, S.A. 1993. Measurement of heat injury in plant tissue by using electrical impedance analysis. Can. J. Bot. 71: 1605–1611.

    Article  Google Scholar 

  • Zhang, M.I.N., Repo, T., Willison, J.H.M., and Sutinen, S. 1995. Electrical impedance analysis in plant tissues: on the biological meaning of Cole-Cole a in Scots pine needles. Eur. Biophys. J. 24: 99–106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burr, K.E., Hawkins, C.D.B., L’Hirondelle, S.J., Binder, W.D., George, M.F., Repo, T. (2001). Methods for Measuring Cold Hardiness of Conifers. In: Bigras, F.J., Colombo, S.J. (eds) Conifer Cold Hardiness. Tree Physiology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9650-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9650-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5587-3

  • Online ISBN: 978-94-015-9650-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics