Skip to main content

Redox Cycling of Intracellular Thiols: State Variables for Ultradian, Cell Division Cycle and Circadian Cycles?

  • Chapter
The Redox State and Circadian Rhythms

Abstract

Since the pioneering work of Rapkine (1931) the hypothesis that many rhythmic life processes may involve cyclic interconversion of dithiols to disulphides provides a central theme that unifies ultradian, cell division cycle and circadian rhythm research. We have shown that in an autonomously-oscillating continuous culture of Saccharomyces cerevisiae ultradian (τ = 40 min) cycles between high and low respiratory states are accompanied by redox cycling of nicotinamide nucleotide(s) and glutathione. This system may provide insights into regulation of rhythmic processes with longer periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aon, M. & Cortassa, S. (1996). Dynamics of Biological Organization, Chapman & Hall, London.

    Google Scholar 

  • Auberson, L.C.M., Kanbier, T. & VonStockar, U. (1993). Monitoring synchronized oscillating yeast cultures by calorimetry. J. Biotechnol. 29, 205–215.

    Article  CAS  Google Scholar 

  • Bashford, C.L., Lloyd, D, Poole, R.K., & Chance, B. (1980). Oscillations of redox states in synchronously dividing cultures of Acanthamoeba castellanii and Schizosaccharomyces pombe. Biophys. J. 29, 1–12.

    Article  CAS  Google Scholar 

  • Brody, S. & Harris, S. (1973). Circadian rhythms in Neurospora: Spatial differences in pyridine nucleotide levels. Science 180, 498–500.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Estabrook, R.W. & Ghosh, A. (1964). Damped sinusodial oscillations of cytoplasmic reduced pyridine nucleotide in cells. Proc. Natl. Acad. Sci. USA, 51, 1244–1251.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Williamson, G., Lee, J.Y., Mela, L., DeVault, D., Ghosh, A & Pye, K. (1973) Synchronization phenomena in oscillations of yeast cells and isolated mitochondria. In Biological and Biochemical oscillations ( Chance, B., Pye, E.K., Ghosh, A.K. & Hess, B., eds.), Academic Press, New York. 285–350.

    Google Scholar 

  • Chernayskii, D. S., Palamarchuk, E. K., Polezhaev, A. A., Solyanik, G. I. and Burlakova, E. B. (1977). A mathematical model of periodic processes in membranes (with application to cell cycle regulation). Biosystems. 9, 187–193.

    Article  Google Scholar 

  • Cornwell, D. G. and Morisaki, N., 1984 Fatty acid paradoxes in the control of cell proliferation: prostaglandins, lipid peroxidases and cooxidation reactions in: Free Radicals in Biology. W.A.Pryor, (ed.) ( Acadmic Press, New York ). 4, 95–148.

    Google Scholar 

  • Degn, H. & Harrison, D.E.F. (1969). Theory of oscillations of respiration rate in continuous culture of Klebsiella aerogenes. J. Theor. Biol. 22, 238

    Article  CAS  Google Scholar 

  • Dieckmann, C.L. (1980). Circadian rhythms in Neurospora crassa: a biochemical and genetic studies of the involvement of mitochondria] metabolism in periodicity, Ph.D. Thesis U. California, San Diego.

    Google Scholar 

  • Demple, B. (1998). A bridge to control, Science. 279, 1655–1657.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, S.W. & Lloyd, D. (1978). Oscillations of respiration and adenine nucleotides in synchronous cultures of Acanthamoeba castellanii: mitochondrial respiratory control in vivo. J. Gen. Microbiol. 108, 197–204.

    CAS  Google Scholar 

  • Edwards, S.W. & Lloyd, D. (1980). Oscillations in protein and RNA content during the synchronous growth of Acanthamoeba castellanii: evidence for periodic turnover of macromolecules during the cell cycle FEBS lett. 109, 21–26.

    CAS  Google Scholar 

  • Gilbert, D.A. (1974). The nature of the cell cycle and the control of cell proliferation. BioSystems. 5, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, D.A. (1978). The malignant transformation: the nature of its effects on cell replication characteristics, S. Afr. J. Sci. 74, 48–49.

    Google Scholar 

  • Gilbert, D.A. & Lloyd, D. (1999). Life an autodynamic process: do we take it for granted, unpublished.

    Google Scholar 

  • Goto, K., Laval-Martin, D. & Edmunds, L.N. Jr. (1985). Biochemical modeling of an autonomously oscillatory circadian clock in Euglena. Science. 228, 1284–1288.

    Article  CAS  Google Scholar 

  • Harrison, D.E.F. & Pirt, J. (1967). The influence of dissolved oxygen concentration on the respiration and glucose metabolism of Klebsiella aerogenes during growth. J. Gen. Microbiol. 46, 193–211

    PubMed  CAS  Google Scholar 

  • Harrison, D.E.F., McLennan, D.G. & Pirt, S.J. (1969); Responses of bacteria to dissolved oxygen tension, Ferm. Adv. New York; Academic Press.

    Google Scholar 

  • Hess, B. & Boiteux, A. (1973) Substrate control of glycolytic oscillations. In Biological and Biochemical Oscillators (Chance, B. Pye, E.K., Ghosh A.K. & Hess, B. eds.) Academic Press, New York. 229–242.

    Google Scholar 

  • Hess, B., Kauschemitz, D. & Markus, M. (1984), Dynamic coupling and time-patterns of glycolysis. In Dynamics of Biochemical Systems (eds. Ricord, J., & Cornish-Bowden, A.) Plenum Press, New York. 213–226

    Google Scholar 

  • Kader, J. & Lloyd (1979) Respiratory oscillations in synchronous cultures of Candida utilis. J. Gen. Microbiol. 114, 455–461.

    CAS  Google Scholar 

  • Keulers, M., Satroutdinov, A.D., Suzuki, T. & Kuriayma, H. (1996a). Synchronization affector of autonomous short-period sustained oscillation of Saccharomyces cerevisiae. Yeast. 12, 673–682.

    Google Scholar 

  • Keulers, M., Satroutdinov, A.D. & Kuriyama, H. (1996b). Oscillations in ethanol-grown Saccharomyces cerevisiae. FEMS Microbiol Lett. 142, 253–258.

    Google Scholar 

  • Lloyd, D., Murray, D.B., Engelen, F.A.A., Keulers, M. & Kuriyama, H. (1998). NO+, but not NO°, inhibits respiratory oscillations in ethanol-grown chemostat cultures of Saccharomyces cerevisiae. Biochem. Soc. Trans. 26, S339.

    PubMed  Google Scholar 

  • Lloyd, D., Poole, R.K. & Edwards, S.W. (1982). The Cell Division Cycle; Temporal Organization and Control of Cellular Growth and Reproduction. Academic Press, London.

    Google Scholar 

  • Lloyd. D. (1993). Ultradian clock-coupled rhythms in lower eukaryotes. In Ultradian Rhythms in Life Processes. ( Lloyd, D. & Rossi, E.R. ) eds., Springer-Verlag, London. 1–12

    Google Scholar 

  • Lloyd, D., Phillips, C.A. & Statham, M. (1978). Oscillations of respiration, adenine nucleotide levels and heat evolution in synchronous cultures of Tetrahymena pyriformis ST prepared by continuous flow selection. J. Gen. Microbiol. 106, 19–26.

    CAS  Google Scholar 

  • Lloyd, D., & Edwards, S.W. (1984) Life’s slow dance to the music of time. In Cell Cycle Clocks ( L. Edmunds Jr., Ed). Marcell Dekker, New York.

    Google Scholar 

  • Lloyd, D. & Gilbert, D.A. (1998). Dynamics of the Cell division cycle. In: Light, Time and Microbes, Symp. Soc. Gen Microbiol. 56, 251–278.

    Google Scholar 

  • Lloyd, D. & Volkov, E. I. (1990) Quantized cell cycle times: interaction between a relaxation oscillator and ultradian clock pulses. BioSystems. 23, 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Mano, Y. (1970). Cytoplasmic regulation and cyclic variation in protein synthesis is in the early clevage stage of the sea urchin embryo. Devel. Biol. 22, 433–460.

    Article  CAS  Google Scholar 

  • Mano, Y. (1975). Systems constituting the metabolic sequence in the cell cycle. BioSystems. 7, 51–65.

    Article  PubMed  CAS  Google Scholar 

  • Mano, Y, (1977). Interaction between glutathione and the endoplasmic reticulum in cyclic protein synthesis in sea urchin embryos. Developmental Biology. 61, 273–286

    Article  PubMed  CAS  Google Scholar 

  • Martegani, E. Porro, D., Ranzi, B.M. & Alberghina, L. (1990). Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast, Biotechnol. Bioengn. 36, 453–459.

    Google Scholar 

  • Munch, T., Sonnleitner, B. & Fiechter, A. (1992). New insights into the synchronization mechanism with forced synchronous cultures of Saccharomyces cerevisiae. J. Biotechnol. 24, 299–314.

    Article  Google Scholar 

  • Murray, D.B., Engelen, F.A.A. Keulers, M., Kuriyama, H. & Lloyd, D. (1998). NO+, but not NO’, in inhibits respiratory oscillations in ethanol-grown chemostat cultures of Sacchromyces cerevisiae. FEBS Lett. 431, 297–299.

    Article  PubMed  CAS  Google Scholar 

  • Murray, D.B., Engelen, F.A.A., Lloyd, D. & Kuriyama, H. (1999). Glutathione regulates respiratory oscillation in Saccharomyces cerevisiae continuous culture, Microbiology (in press).

    Google Scholar 

  • Poole, R.K., Lloyd, D. & Kemp, R.B. (1973). Respiratory oscillations and heat evolution in synchronously-dividing cultures of the fission-yeast, Schizosaccharomyces pombe. J. Gen. Microbiol. 77, 209–220.

    Google Scholar 

  • Parulekar, S.J., Semones, G.B., Rolf, M.L., Lievense, J.C. & Lim, H.C. (1986). Induction and elimination of oscillations in continuous cultures in Saccharomyces cerevisiae continuous culture. Biotechnol. Bioeng. 28, 700–710.

    Article  PubMed  CAS  Google Scholar 

  • Rapkine (1931). Chemical processes during cellular division. Ann. Physiol. Physicochem. Biol. 7, 382.

    CAS  Google Scholar 

  • Satroutdinov, A.D., Kuriyama, H. & Kobayashi, H. (1992). Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiol. Lett. 98, 261–268.

    Article  CAS  Google Scholar 

  • Sel’kov, E.E. (1970). Two alternative, self-oscillatory stationary states in thiol metabolism-two alternative types of cell division-normal and malignant ones. Biophysica. 15, 1065–1073.

    Google Scholar 

  • Strassle, C.A. (1988) Modell zur Spontansynchronisation v Saccharomyces cerevisiae Ph.D. Thesis, ETH, Zurich.

    Google Scholar 

  • Van Langendonckt, A. & Vanden Driessche, T. (1992) Changes in intracellular distribution of thiol groups during the development of Acetabularia mediterranea. J. Exp. Bot. 43, 1643–1650.

    Article  Google Scholar 

  • Van Langendonckt, A., de Solan, C., Jerebzoff, S. & Vanden Driessche, T. (1991). Non chloroplastic pyridine nucleotides. Concentrations in Acetabularia as related with the developmental program: circadian modulation of the concentrations. J. Interdiscip. Cycle Res. 22, 223–236.

    Article  Google Scholar 

  • Von Meyenburg, H. K. (1969). Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited growth. Archives Mikrobiol. 66, 289–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thérèse Vanden Driessche Jean-Luc Guisset Ghislaine M. Petiau-de Vries

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lloyd, D., Murray, D.B. (2000). Redox Cycling of Intracellular Thiols: State Variables for Ultradian, Cell Division Cycle and Circadian Cycles?. In: Driessche, T.V., Guisset, JL., Petiau-de Vries, G.M. (eds) The Redox State and Circadian Rhythms. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9556-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9556-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5516-3

  • Online ISBN: 978-94-015-9556-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics