Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 524))

Abstract

When a sound wave interacts with a bubble or a collection of bubbles present in a fluid, there is a conversion of acoustical to mechanical energy through a process known as acoustic cavitation. The resulting physical effects include cavitation microstreaming, collapse microjets, shock waves, elevated pressures and temperatures, and excess acoustic attenuation. It is possible to influence, and in some cases control, these processes through careful manipulation of the relevant physical parameters. The article provides a brief overview of the basics of cavitation nucleation and dynamics, followed by capsule descriptions of various physical effects that result from acoustic cavitation activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suslick, K.S., Doktycz, S.J., and Flint, E.B. (1990) On the Origin of sonoluminsecence and sonochemistry, Ultrasonics 28, 280–290.

    Article  Google Scholar 

  2. Kamath, V., Prosperetti, A. and Egolofopoulos, F.N. (1993) A theoretical study of sonoluminescence, J. Acoust. Soc. Am. 94, 248–260.

    Article  ADS  Google Scholar 

  3. Elder, S.A. (1958) Cavitation microstreaming, J. Acoust. Soc. Am. 31, 54–64.

    Article  ADS  Google Scholar 

  4. Nyborg, W.L. (1958) Acoustic streaming near a boundary, J. Acoust. Soc. Am. 30, 329–339.

    Article  MathSciNet  ADS  Google Scholar 

  5. Leighton, T.G. (1995) Bubble population phenomena in acoustic cavitation, Ultrasonics Sonochemistry 2, S123 - S136.

    Article  Google Scholar 

  6. Leighton, T.G. (1994) The Acoustic Bubble, Academic Press, London.

    Google Scholar 

  7. Flynn, H.G. (1964) Physics of acoustic cavitation in liquids, in W.P. Mason (ed.), Physical Acoustics, Vol. 1, Part B, Academic Press, New York, pp. 57–172.

    Google Scholar 

  8. Epstein, P.S. and Plesset, M.S. (1950) On the stability of gas bubbles in liquid-gas solutions, J. Chem. Phys. 18, 1505–1509.

    Article  ADS  Google Scholar 

  9. Apfel. R.E. (1981) Acoustic Cavitation, in P.D. Edmonds (ed.), Methods in Experimental Physics, Vol. 19, Academic Press, New York, pp. 355–413.

    Google Scholar 

  10. Harvey, E.N., Barnes, D.K., McElroy, W.D., Whiteley, A.H., Pease, D.C., and Cooper, K.W. (1944) Bubble formation in animals, J. Cell. Comp. Physiol. 24, 1–22.

    Article  Google Scholar 

  11. Strasberg, M. (1959) Onset of ultrasonic cavitation in tap water, J. Acoust. Soc. Am. 31, 163–176.

    Article  ADS  Google Scholar 

  12. Apfel, R.E. (1970) The role of impurities in cavitation threshold determination, J. Acoust. Soc. Am. 48, 1179–1186.

    Article  ADS  Google Scholar 

  13. Crum, L.A. (1979) The tensile strength of water, Nature 278, 148–149.

    Article  ADS  Google Scholar 

  14. Atchley, A.A. and Prosperetti, A. (1989) The crevice model of bubble nucleation, J. Acoust. Soc. Am. 86, 1065–1084.

    Article  ADS  Google Scholar 

  15. Fox, F.E. and Hertzfeld, K.F. (1954) Gas bubbles with organic skin as cavitation nuclei, J. Acoust. Soc. Am. 26, 984–989.

    Article  ADS  Google Scholar 

  16. Yount, D.E. (1979) Skins of varying permeability: a stabilization mechanism for gas cavitation nuclei, J. Acoust. Soc. Am. 65, 1429–1439.

    Article  ADS  Google Scholar 

  17. Yount, D.E. (1982) On the evolution, generation, and regeneration of gas cavitation nuclei, J. Acoust. Soc. Am. 71, 1473–1481.

    Article  ADS  MATH  Google Scholar 

  18. Hayward, A.T.J. (1967) Tribonucleation of bubbles, Brit. J. Appl. Phys. 18, 641–644.

    Article  ADS  Google Scholar 

  19. Sirotyuk, M.G. (1970) Stabilisation of gas bubbles in water, Sov. Phys. Acoust. 16, 237–240.

    Google Scholar 

  20. Akulichev, V.A. (1966) Hydration of ions and the cavitation resistance of water, Soy. Phys. Acoust. 12, 144–149.

    Google Scholar 

  21. Lauterborn, W. (1976) Numerical investigation of nonlinear oscillations of gas bubbles in liquids, J. Acoust. Soc. Am. 59, 283–293.

    Article  ADS  Google Scholar 

  22. Eller, A.I. and Flynn, H.G. (1965) Rectified diffusion through nonlinear pulsations of gas bubbles, J. Acoust. Soc. Am. 37, 493–503.

    Article  MathSciNet  ADS  Google Scholar 

  23. Crum, L.A. and Hanson, G.M. (1984) Rectified diffusion, Ultrasonics 22, 15–223.

    Article  Google Scholar 

  24. Bjerknes, V.F.J. (1906) Fields of Force, Columbia University Press, New York.

    Google Scholar 

  25. Blake, F.G. (1949) Bjerknes forces in stationary sound fields, J. Acoust. Soc. Am. 21, 551.

    Article  ADS  Google Scholar 

  26. Crum, L.A. and Eller, A.I. (1969) Motion of bubbles in a stationary sound field, J. Acoust. Soc. Am. 48, 181–189.

    Article  ADS  Google Scholar 

  27. Rayleigh, Lord (1917) On the pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag. 34, 94–98.

    Article  MATH  Google Scholar 

  28. Gaitan, D.F., Crum, L.A., Church, C.C. and Roy, R.A. (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble, J. Acoust. Soc. Am. 91, 3166–3183.

    Article  ADS  Google Scholar 

  29. Sturtevant, B. (1989) The physics of shock wave focusing in the context of extracorporeal shock wave lithotripsy, Proc. Intl. Workshop on Shock Wave Focusing, Sendai, Japan, pp. 39–64.

    Google Scholar 

  30. Holland, C.K. and Apfel, R.E. (1989) An improved theory for the prediction of microcavitation thresholds, IEEE Trans. Ultrasonics Ferroelectrics Freq. Control 36, 204–208.

    Article  Google Scholar 

  31. Morse, P.M. and Ingard, K.U. (1968) Theoretical Acoustics, Princeton Univ. Press, Princeton, pg. 286.

    Google Scholar 

  32. Coakley, W.T. and Nyborg, W.L. (1978) Chapter II: cavitation; dynamics of gas bubbles; applications, in F. Fry (ed.), Ultrasound: its Applications in Medicine and Biology, Elsevier, Amsterdam, pp. 77–159.

    Google Scholar 

  33. Tomita, Y. and Shima, A. (1886) Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse, J. Fluid Mech. 169, 535–564.

    Article  ADS  Google Scholar 

  34. Vogel, A., Lauterbom, W. and Timm, R. (1989) Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary, J. Fluid Mech. 206, 299–338.

    Article  ADS  Google Scholar 

  35. Crum, L.A. (1989) Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL, J. Urol. 85, 1518–1522.

    Google Scholar 

  36. Neppiras, E.A. (1980) Acoustic cavitation, Phys. Rep. 61, 159–251.

    Article  MathSciNet  ADS  Google Scholar 

  37. Roy, R.A., Atchley, A.A., Crum, L.A., Fowlkes, J.B. and Reidy, J.J. (1985) A precise technique for the measurement of acoustic cavitation thresholds and some preliminary results, J. Acoust. Soc. Am. 78, 1799–1805.

    Article  ADS  Google Scholar 

  38. Plesset, M.S. and Prosperetti, A. (1977) Bubble dynamics and cavitation, Ann. Rev. Fluid Mech. 9, 145185.

    Google Scholar 

  39. Hickling, R. and Plesset, M.S. (1964) Collapse and rebound of a spherical bubble in water, Phys. Fluids 7, 7–14.

    Article  ADS  MATH  Google Scholar 

  40. Watmough et al. (1993) Ultrasound in Med. and Biol. 19, 231.

    Article  Google Scholar 

  41. Holt, R.G., Cleveland, R.O. and Roy, R.A. (1998) Optimal acoustic parameters for induced hyperthermia from focused MHz ultrasound: phantom measurements with fluid flow and bubble activity, in Proceedings of the 16th International Congress on Acoustics and the 135th Meeting of the Acoustical Society of America, Vol. II, American Institute of Physics, pp. 1057–1058.

    Google Scholar 

  42. Henglein, A. and Gutierrez, M. (1986) Chemical reactions by pulsed ultrasound: memory effects in the formation of NO2 and NO3 in aerated water, Int..1. Radiat. Biol. 50, 527–533.

    Article  Google Scholar 

  43. Ciaravino, V., Flynn, H.G., Miller, M.W. and Carstensen, E.L. (1981) Pulsed enhancement of acoustic cavitation: a postulated model, Ultrasound Med. Biol. 7, 159–166.

    Article  Google Scholar 

  44. Flynn, H.G. and Church, C.C. (1984) A mechanism for generating cavitation maxima by pulsed ultrasound, J. Acoust. Soc. Am. 76, 505–512.

    Article  ADS  Google Scholar 

  45. Flint, E.B. and Suslick, K.S. (1991) Science 253, 13–79.

    Article  Google Scholar 

  46. Crum, L.A. (1994) Sonoluminescence, Physics Today (Sept.) 22–29.

    Google Scholar 

  47. Commander, K.W. and Prosperetti, A. (1989) Linear pressure waves in bubbly liquids: comparison between theory and experiments, J. Acoust. Soc. Am. 85, 732–746.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roy, R.A. (1999). Cavitation Sonophysics. In: Crum, L.A., Mason, T.J., Reisse, J.L., Suslick, K.S. (eds) Sonochemistry and Sonoluminescence. NATO ASI Series, vol 524. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9215-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9215-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5162-2

  • Online ISBN: 978-94-015-9215-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics