Skip to main content

Influence of Fluid and Deformation on Metamorphism of the Deep Crust and Consequences for the Geodynamics of Collision Zones

  • Chapter
When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks

Part of the book series: Petrology and Structural Geology ((PESG,volume 10))

Abstract

A survey of natural transitions from igneous rocks, amphibolite, and granulite, to eclogite demonstrates that the transitions may take place over cm-scale distances parallel to fluid fronts. Rocks ranging in composition from basaltic to granitic show incomplete reactions over the whole range of high pressure to ultrahigh-pressure conditions (500°C and 1.2 GPa to 800°C and >3.0 GPa), indicating overstepping of reaction boundaries of ͠ 1 GPa. When fluid becomes available metastable crust may react forcefully and release earthquakes as indicated by occurrence of eclogite-facies pseudotachylite.

Eclogitization weakens the crust equivalent to a temperature increase of > 100°C. At an eclogitization degree of ͠ 40% the crust loses coherence and pre-existing structure. Reaction of eclogites to granulites and amphibolites also depends on fluid availability. The rheology and density changes caused by fluid-induced eclogite formation and retrogression influence the evolution of collision zones by controlling the timing of collapse, the topography of a collision zone, the exhumation of deep crustal sections, and the amount of material returned to the mantle. The evolution of collision and subduction zones depends not only on temperature and pressure evolution, but also on the fluid budget.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahrens, T.J. and Schubert, G. (1975a) Gabbro-eclogite reaction rate and its geophysical significance, Reviews of Geophysics and Space Physics 13, 383–400.

    Article  Google Scholar 

  • Ahrens, T.J. and Schubert, G. (1975b) Rapid formation of eclogite in a slightly wet mantle, Earth and Planetary Science Letters 27, 90–94.

    Article  Google Scholar 

  • Andersen, T.B., Jamtveit, B., Dewey, J.F., and Swensson, E. (1991) Subduction and eduction of continental crust: major mechanism during continent-continent collision and orogenic extensional collapse, a model based on the south Caledonides, Terra Nova 3, 303–310.

    Article  Google Scholar 

  • Artyushkov, E.A., Baer, M.A., and Mørner, N.-A. (1996) The East Carpathians: indications of phase transitions, lithospheric failure and decoupled evolution of thrust belts and its foreland, Tectonophysics 262, 101–133.

    Article  Google Scholar 

  • Austrheim, H. (1991) Eclogite formation and dynamics of crustal roots under continental collision zones, Terra Nova 3, 492–499.

    Article  Google Scholar 

  • Austrheim, H. and Boundy, T.M. (1994) Pseudotachylytes generated during seismic faulting and eclogitization of deep crust, Science 265, 82–83.

    Article  Google Scholar 

  • Austrheim, H. and Engvik, A.K. (1997) Fluid transport, deformation and metamorphism at depth in a collision zone, in B. Jamtveit and B.W.D. Yardley (eds.), Fluidflow and transport in rocks: mechanisms and effects, Chapman and Hall, London, pp. 123–137.

    Chapter  Google Scholar 

  • Austrheim, H., Erambert, M., and Boundy, T.M. (1996) Garnet recording deep crustal earthquakes, Earth and Planetary Science Letters 139, 223–238.

    Article  Google Scholar 

  • Austrheim, H., Erambert, M., and Engvik, A.K. (1997) Processing of crust in the root of the Caledonian continental collision zone: the role of eclogitization, Tectonophysics 273, 129–153.

    Article  Google Scholar 

  • Austrheim, H. and Mørk, M.B.E. (1988) The lower continental crust of the Caledonian mountain chain: evidence from former deep crustal sections in western Norway, in Y. Kristofferson (ed.), Progress in Studies of the Lithosphere in Norway, 3, Norges Geologiske Undersøkelse, Trondheim, pp. 102–113.

    Google Scholar 

  • Baker, J., Matthews, A., Mattey, D., Rowley, D., and Xue, F. (1997) Fluid-rock interactions during ultra-high pressure metamorphism, Dabie Shan, China, Geochimica Cosmochimica et Acta 61, 1685–1696.

    Article  Google Scholar 

  • Barnicoat, A.C. and Cartwright, I. (1997) The gabbro-eclogite transformation: an oxygen isotope and petrographic study of west Alpine ophiolites, Journal of Metamorphic Geology 15, 93–104.

    Article  Google Scholar 

  • Biino, G. and Compagnoni, R. (1992) Very-high pressure metamorphism of the Brossasco coronite metagranite, southern Dora-Maira massif, Western Alps, Schweizerische Mineralogische und Petrographische Mitteilungen 72, 347–363.

    Google Scholar 

  • Bohlen, S.R. and Boettcher, A.L. (1982) The quartz-coesite transformation: a precise determination and the effects of other components, Journal of Geophysical Research 97, 7073–7078.

    Article  Google Scholar 

  • Boundy, T.M., Fountain, D.M., and Austrheim, H. (1992) Structural development and petrofabrics of eclogite facies shear zones, Bergen arcs, western Norway; implications for deep crustal deformational processes, Journal of Metamorphic Geology 10, 127–146.

    Article  Google Scholar 

  • Bousquet, R., Goffe, B., Henry, P., Le Pichon, X., and Le Pichon C., Le Pichon C. (1997) Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust, Tectonophysics 273, 105–127.

    Article  Google Scholar 

  • Carbonell, R., Perez-Estaun, A., Gallart, J., Diaz, J., Kashubin, S., Mechie, J., Stadtlander, R., Schulze, A., Knapp, J.H., and Morozov, A. (1996) Crustal root beneath the Urals; wide-angle seismic evidence, Science 274, 222–224.

    Article  Google Scholar 

  • Chopin, C., Simon, G., and Schenk, V. (1997) Granulite-facies overprint in Ultrahigh-pressure rocks (Dora-Maira massif): Evidence for low temperature granulites?, Terra Nova 9, 6.

    Google Scholar 

  • Cloos, M. (1993) Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts, Geological Society of America Bulletin 105, 715–737.

    Article  Google Scholar 

  • Comte, D. and Suárez, G. (1994) An inverted double seismic zone in Chile; evidence of phase transformation in the subducted slab, Science 263, 212–215.

    Article  Google Scholar 

  • Dewey, J.F., Ryan, P.D., and Andersen, T.B. (1993) Orogenic uplift and collapse, crustal thickness, fabrics and metamorphic phase changes; the role of eclogites, Geological Society Special Publications 76, 325–343.

    Article  Google Scholar 

  • Dunn, S.R. and Medaris, J., Medaris, L.G. (1989) Retrograded eclogites in the Western Gneiss Region, Norway, and thermal evolution of a portion of the Scandinavian Caledonides, Lithos 22, 229–245.

    Google Scholar 

  • Ellis, D.J. and Maboko, M.A.H. (1992) Precambrian tectonics and the physicochemical evolution of the continental crust. I. The gabbro-eclogite transition revisited, Precambrian Research 55, 491–506.

    Article  Google Scholar 

  • Engvik, A.K., Austrheim, H., and Andersen, T.B. (in preparation) Structural, mineralogical and petrophysical changes in Proterozoic crust recycled through the root zone of the Caledonian mountain chain and consequences for collisional geodynamics

    Google Scholar 

  • Erambert, M. and Austrheim, H. (1993) The effects of fluid and deformation on zoning and inclusion pattern in poly-metamorphic garnets, Contributions to Mineralogy and Petrology 115, 204–214.

    Article  Google Scholar 

  • Ernst, W.G., Mosenfelder, J.L., Leech, M.L., and Liu, J. (this volume) H2O recycling during continental collision: phase-equilibrium and kinetic considerations

    Google Scholar 

  • Fountain, D.M. and Salisbury, M.H. (1981) Exposed cross-sections through the continental crust: implications for crustal structures, petrology and evolution, Earth and Planetary Science Letters 56, 267–277.

    Article  Google Scholar 

  • Gil Ibarguchi, J.I. (1995) Petrology of jadeite metagranite and associated orthogneisses from the Malpica-Yuy allochthon (Northwest Spain), European Journal of Mineralogy 7, 403–415.

    Google Scholar 

  • Green, D.H. and Ringwood, A.E. (1967) An experimental investigation of the gabbro-eclogite transformation and its petrological implications, Geochimica Cosmochimica et Acta 31, 767–833.

    Article  Google Scholar 

  • Hacker, B.R. (1996) Eclogite formation and the rheology, buoyancy, seismicity, and H2O content of oceanic crust, in G.E. Bebout, Scholl, D., Kirby, S.H., Platt, J.P. (ed.), Dynamics of Subduction, Monograph, American Geophysical Union, Washington, D.C., pp. 337–246.

    Google Scholar 

  • Hacker, B.R. (1997) Diagenesis and the fault-valve seismicity of crustal faults, Journal of Geophysical Research 102, 24,459–24,467.

    Article  Google Scholar 

  • Hacker, B.R., Bohlen, S.R., and Kirby, S.H. (1993) Albite —→ jadeite + quartz transformation in albitite, Eos, Transactions American Geophysical Union 74, 611.

    Article  Google Scholar 

  • Hacker, B.R. and Peacock, S.M. (1994) Creation, preservation, and exhumation of coesite-bearing, ultrahigh-pressure metamorphic rocks, in R.G. Coleman and X. Wang (eds.), Ultrahigh Pressure Metamorphism, Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Heinrich, C.H. (1982) Kyanite-Eclogite to Amphibolite facies evolution of hydrous mafic and pelitic rocks, Adula nappe, central Alps, Contributions to Mineralogy and Petrology 81, 30–38.

    Article  Google Scholar 

  • Henry, P., Le Pichon, X., and Goffe, B. (1997) Kinematics, thermal and petrological model of the Himalayas: constraints related to metamorphism within the underthrust Indian crust and topographic elevation, Tectonophysics 273, 31–56.

    Article  Google Scholar 

  • Holland, T.J.B. (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C, American Mineralogist 65, 129–134.

    Google Scholar 

  • Hori, S. (1990) Seismic waves guided by untransformed oceanic crust subducted into the mantle: The case of the Kanto district, central, Japan, Tectonophysics 176, 355–376.

    Article  Google Scholar 

  • Hurukawa, N. and Imoto, M. (1992) Subducting oceanic crusts of the Philippine Sea and Pacific plates and weak-zone-normal compression in the Kanto District, Japan, Geophysical Journal International 109, 639–652.

    Article  Google Scholar 

  • Hurukawa, N. and Hurukawa, M. (1993) A non double-couple earthquake in the subducting oceanic crust of the Philippine Sea plate, Journal of the Physics of the Earth 41, 257–269.

    Article  Google Scholar 

  • Jamtveit, B. (1987) Magmatic and metamorphic controls on the chemical variations within the Eiksunddal eclogite complex, Sunnmøre, western Norway, Lithos 20, 369–389.

    Article  Google Scholar 

  • Kirby, S.H. (1984) Introduction and digest to the special issue on chemical effects of water on the deformation and strength of rocks, Journal of Geophysical Research 89, 3991–3995.

    Article  Google Scholar 

  • Kirby, S.H., Engdahl, E.R., and Denlinger, R. (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs, in G.E. Bebout, D. Scholl, and S. Kirby (eds.), Subduction top to bottom, Geophysical Monograph, 96, AGU, Washington, D.C., pp. 195–214.

    Chapter  Google Scholar 

  • Klaper, E.M. (1990) Reaction-enhanced formation of eclogite-facies shear zones in granulite-facies anorthosites, in R.J. Knipe and E.H. Rutter (eds.), Deformation Mechanisms, Rheology and Tectonics, Geological Society of London Special Publication, 54, London, pp. 167–173.

    Google Scholar 

  • Koons, P.O., Rubie, D.C., and Frueh-Green, G. (1987) The effects of disequilibrium and deformation on the mineralogical evolution of quartz diorite during metamorphism in the eclogite facies, Journal of Petrology 28, 679–700.

    Article  Google Scholar 

  • Krogh, E.J. (1977) Evidence of Precambrian continent-continent collision in Western Norway, Nature 267, 17–19.

    Article  Google Scholar 

  • Krogh, E.J. (1980) Geochemistry and petrology of glaucophane-bearing eclogites and associated rocks from Sunnfjord, Western Norway, Lithos 13, 355–380.

    Article  Google Scholar 

  • Laubscher, H. (1988) Material balance in alpine orogeny, Geological Society of America Bulletin 100, 1313–1328.

    Article  Google Scholar 

  • Le Pichon, X., Fournier, M., and Jolivet, L. (1992) Kinematics, topography, shortening, and extrusion in the India—Eurasia collision, Tectonics 11, 1085–1098.

    Article  Google Scholar 

  • Le Pichon, X., Henry, P., and Goffe, B. (1997) Uplift of Tibet: from eclogite to granulites implications for the Andean Plateau and Variscan belt, Tectonophysics 273, 57–76.

    Article  Google Scholar 

  • Lennykh, V.I., Valizer, P., and Schulte, B.A. (1997) Eclogites and blue schists of the Urals: Evolution and Geodynamics, Terra Nova 9, 17.

    Google Scholar 

  • Meyer, J. (1983) Mineralogie und Petrologie des Allalin gabbros. Basel, p. 331. University of Basel, Switzerland.

    Google Scholar 

  • Mooney, W.D. and Meissner, R. (1991) Continental crustal evolution observations, Transactions of the American Geophysical Union, Eos 72, 537–538.

    Article  Google Scholar 

  • Mørk, M.B.E. (1985) A gabbro to eclogite transition on Flemsøy, Sunnmøre, western Norway, Chemical Geology 50, 283–310.

    Article  Google Scholar 

  • O’Brien, P.J. (1993) Partially retrograded eclogites of the Muenchberg Massif, Germany; records of a multi-stage Variscan uplift history in the Bohemian Massif, Journal of Metamorphic Geology 11, 241–260.

    Article  Google Scholar 

  • Pennacchioni, G. (1996) Progressive eclogitization under fluid-present conditions of pre-Alpine mafic granulites in the Austroalpine Mt Emilius Klippe (Italian western Alps), Journal of Structural Geology 18, 549–561.

    Article  Google Scholar 

  • Rubie, D.C. (1983) Reaction-enhanced ductility: the role of solid-solid univariant reactions in deformation of the crust and mantle, Tectonophysics 96, 331–352.

    Article  Google Scholar 

  • Rubie, D.C. (1986) The catalysis of mineral reactions by water and restrictions on the presence of aqueous fluid during metamorphism, Mineralogical Magazine 50, 399.

    Article  Google Scholar 

  • Rubie, D.C. (1990) Role of kinetics in the formation and preservation of eclogites, in D.A. Carswell (ed.), Eclogite Facies Rocks, Blackie, Glasgow, pp. 111–140.

    Chapter  Google Scholar 

  • Ruff, L. and Kanamori, H. (1983) Seismic coupling and uncoupling at subduction zones, Tectonophysics 99, 99–117.

    Article  Google Scholar 

  • Rumble, D. (this volume) Stable Isotope Geochemistry Of Ultrahigh-Pressure Rocks, in B.R. Hacker and J.G. Liou (eds.), When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ryan, P.D. and Dewey, J.F. (1997) Continental eclogites and Wilson Cycle, Journal of the Geological Society of London 154, 437–442.

    Article  Google Scholar 

  • Sapin, M. and Hirn, A. (1997) Seismic structure and evidence for eclogitization during the Himalaya convergence, Tectonophysics 273, 1–16.

    Article  Google Scholar 

  • Smith, D.C. (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics, Nature 310, 641–644.

    Article  Google Scholar 

  • Steer, D.N., Knapp, J.H., Brown, L.D., Rybalka, A.V., and Sololov, V.B. (1995) Crustal structure of the Middle Urals based on reprocessing of Russian seismic reflection data, Geophysical Journal International 123, 673–683.

    Article  Google Scholar 

  • Straume, Å.K. (1997) Retrograde metamorphism of eclogites from Haddal-Ulsteinvik, Sunnmøre. Oslo, p. 150. University of Oslo, Norway.

    Google Scholar 

  • Udovkina, N.G. (1971) Eklogity Poliarnogo Urala (Eclogites of the Polar Urals), Nauka, Moscow.

    Google Scholar 

  • Valley, J.W. and Graham, C.M. (1993) Cryptic grain-scale heterogeneity of oxygen isotope ratios in metamorphic magnetite, Science 259, 1729–1733.

    Article  Google Scholar 

  • Van Wyck, N., Valley, J.W., and Austrheim, H. (1996) Oxygen and carbon isotopic constraints on the development of eclogites, Holsnøy, Lithos 38, 129–147.

    Article  Google Scholar 

  • Wain, A. (1997) New evidence for coesite in eclogite and gneisses; defining an ultrahigh-pressure province in the Western Gneiss region of Norway, Geology 25, 927–930.

    Article  Google Scholar 

  • Wallis, S.R., Ishiwatari, A., Hirajima, T., Ye, K., Guo, J., Nakamura, D., Kato, K., Zhai, M., Enami, M., Cong, B., and Banno, S. (1997) Occurrence and field relationships of ultrahighpressure metagranitoid and coesite eclogite in the Su-Lu terrane, eastern China, Journal of the Geological Society of London 154, 45–54.

    Article  Google Scholar 

  • Wedepohl, K.H. (1970) Geochemistry, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Weiss, L.E. and Wenk, H.R. (1983) Experimentally produced pseudotachylite-like veins in gabbro, Tectonophysics 96, 299–310.

    Article  Google Scholar 

  • Wheeler, J. (1987) The significance of grain-scale stresses in kinetics of metamorphism, Contributions to Mineralogy Petrology 97, 397–404.

    Article  Google Scholar 

  • Yui, T.F., Rumble, D., and Lo, C.H. (1995) Unusually low 180 ultrahigh-pressure metamorphic rocks from the Sulu terrain, eastern China, Geochimica Cosmochimica et Acta 59, 2859–2864.

    Article  Google Scholar 

  • Yui, T.Z., Rumble, D., Chen, C.H., and Lo, C.H. (1997) Stable isotope characteristics of eclogites from the ultra-high-pressure metamorphic terrain, east-central China, Chemical Geology 137, 135–147.

    Article  Google Scholar 

  • Zhang, R.Y. and Liou, J.G. (1997) Partial transformation of gabbro to coesite-bearing eclogite from Yangkou, the Sulu Terrane, eastern China, Journal of Metamorphic Geology 15, 183–202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Austrheim, H. (1998). Influence of Fluid and Deformation on Metamorphism of the Deep Crust and Consequences for the Geodynamics of Collision Zones. In: Hacker, B.R., Liou, J.G. (eds) When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Petrology and Structural Geology, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9050-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9050-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4028-2

  • Online ISBN: 978-94-015-9050-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics