Skip to main content

Total positivity and optimal bases

  • Chapter
Total Positivity and Its Applications

Part of the book series: Mathematics and Its Applications ((MAIA,volume 359))

Abstract

In a finite dimensional space which has a totally positive basis there exist special bases, called B-bases, such that they generate all totally positive bases by means of totally positive matrices. B-bases are optimal totally positive bases in several senses. From the geometrical point of view, B-bases correspond to the bases with optimal shape preserving properties. From a numerical point of view B-bases are least supported and least conditioned bases among all totally positive bases of space. In order to deal with these questions we introduce a partial order in the set of nonnegative bases: if (v 0,..., v n ) = (u 0,..., u n )H for a nonnegative matrix H, we say that (u 0,..., u n ) ≤ (v 0,..., v n ) . We shall show that B-bases are minimal for this partial order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, T., Totally positive matrices, Linear Algebra Appl. 90 (1987), 165–219.

    Article  MathSciNet  MATH  Google Scholar 

  2. de Boor, C., The exact condition of the B-spline basis may be hard to determine. J. Approx. Th. 60 (1990), 334–359.

    Google Scholar 

  3. Carnicer, J. M., and Peña, J. M., Shape preserving representations and optimality of the Bernstein basis, Advances in Computational Mathematics 1 (1993), 173–196.

    Article  MathSciNet  MATH  Google Scholar 

  4. Carnicer, J. M., and Peña, J. M., Least supported bases and local linear independence, Numer. Math. 67 (1994), 289–301.

    Article  MathSciNet  MATH  Google Scholar 

  5. Carnicer, J. M., and Peña, J. M., Spaces with almost strictly totally positive bases, Math. Nach. 169 (1994), 69–79.

    Article  MATH  Google Scholar 

  6. Carnicer, J. M., and Peña, J. M., Totally positive bases for shape preserving curve design and optimality of B-splines, Computer-Aided Geom. Design 11 (1994), 633–654.

    Google Scholar 

  7. Carnicer, J. M., and Peña, J. M., On transforming a Tchebycheff system into a strictly totally positive system, to appear in J. Approx. Theory.

    Google Scholar 

  8. Carnicer, J. M., and Peña, J. M., Characterizations of the optimal Descartes’ rules of signs, submitted for publication.

    Google Scholar 

  9. Farin, G., Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Boston, 1988.

    MATH  Google Scholar 

  10. Farouki, R. T., and Rajan, V. T., On the numerical condition of polynomials in Bernstein form, Computer-Aided Geom. Design 4 (1987), 191–216.

    MathSciNet  MATH  Google Scholar 

  11. Gasca, M., Micchelli, C.A., and Peña, J. M., Almost strictly totally positive matrices, Numerical Algorithms 2 (1992), 225–236.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gasca, M., and Peña, J. M., Total positivity and Neville elimination, Linear Algebra Appl. 165 (1992), 25–44.

    Article  MathSciNet  MATH  Google Scholar 

  13. Goodman, T.N.T., Shape preserving representations, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche and L. Schumaker (eds.), Academic Press, New York, 1989, 333–357.

    Google Scholar 

  14. Goodman, T.N.T., Inflections on curves in two and three dimensions, Computer-Aided Geom. Design 8 (1991), 37–50.

    Article  MATH  Google Scholar 

  15. Goodman, T.N.T., and Said, H.B., Shape preserving properties of the generalized Ball basis, Computer-Aided Geom. Design 8 (1991), 115–121.

    MathSciNet  MATH  Google Scholar 

  16. Karlin, S., Total positivity, Vol. I, Stanford University Press, Standford, 1968.

    MATH  Google Scholar 

  17. Leviatan, D., On Approximation Operators of the Bernstein Type, J. Approx. Th. 1 (1968), 275–278.

    Article  MathSciNet  MATH  Google Scholar 

  18. Leviatan, D., On the Remainder in the Approximation of Functions by Bernstein-Type Operators, J. Approx. Th. 2 (1969), 400–409.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyche, T., Condition Numbers for B-splines, in Numerical Analysis 1989, D. F. Griffiths and G. A. Watson (eds.), Pittman Research Notes in Mathematics Series 228, Longman Scientific and Technical, Essex, 1990, 182–192.

    Google Scholar 

  20. Pottmann, H., The geometry of Tchebycheffian splines, Computer-Aided Geom. Design 10 (1993), 181–210.

    MathSciNet  MATH  Google Scholar 

  21. Schmeltz, G., Variationsreduzierende Kurvendarstellungen und Krümmungskriterien für Bézierflächen, Dissertation, Fachbereich Mathematik, Technische Hochschule Darmstadt, 1992.

    Google Scholar 

  22. Schoenberg, I. J., Zur Abzälung der reellen Wurzeln algebraischer Gleichungen, Math. Z. 38 (1933), 546–564 .

    Article  MathSciNet  Google Scholar 

  23. Schoenberg, I. J., and Whitney, A., On Polya frequency functions III. The positivity of translation determinants with application to the inter- polation problem by spline curves. Trans. Amer. Math. Soc. 74 (1953), 246–259.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carnicer, J.M., Peña, J.M. (1996). Total positivity and optimal bases. In: Gasca, M., Micchelli, C.A. (eds) Total Positivity and Its Applications. Mathematics and Its Applications, vol 359. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8674-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8674-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4667-3

  • Online ISBN: 978-94-015-8674-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics