Skip to main content

Geometric Algebra and Möbius Sphere Geometry as a Basis for Euclidean Invariant Theory

  • Chapter
Invariant Methods in Discrete and Computational Geometry

Abstract

Physicists have traditionally described their systems by means of explicit parametrizations of all their possible individual configurations. This makes a local description of the motion of the system relatively simple, but provides little insight into the global properties of its solution space. Geometers, on the other hand, tend to describe their systems implicitly in terms of their invariant geometric properties. This approach has the substantial advantage of enabling them to deal with entire sets of configurations simultaneously, and renders every theorem global in scope. In physical problems, an analogous approach would use invariants of the Lie group underlying the dynamical system in question, e.g. angular momentum in the case of rotationally invariant dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Barnabei, A. Brini, and G.-C. Rota. On the exterior calculus of invariant theory. J. Algebra, 96:120–160, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler. Oriented Matroids, volume 46 of Encyclopedia of Mathematics. Cambridge Univ. Press, UK, 1993.

    Google Scholar 

  3. L. M. Blumenthal. Theory and Applications of Distance Geometry. Cambridge Univ. Press, Cambridge, U.K., 1953. Reprinted by the Chelsea Publishing Co., 1970.

    MATH  Google Scholar 

  4. T. E. Cecil. Lie Sphere Geometry. Springer, New York, NY, 1992.

    Book  MATH  Google Scholar 

  5. H. Crapo and J. Richter-Gebert. Automatic proving of geometric theorems: A geometric approach. In Invariant Methods in Discrete and Computational Geometry. Kluwer Academic, Dordrecht, NL, 1994.

    Google Scholar 

  6. H. Crapo and G.-C. Rota. On the Foundations of Combinatorial Invariant Theory: Combinatorial Geometries. M.I.T. Press, Cambridge, Mass., USA, 1970.

    MATH  Google Scholar 

  7. G. M. Crippen and T. F. Havel. Distance Geometry and Molecular Conformation. Research Studies Press, Taunton, U.K., 1988 (distributed in the USA by J. Wiley & Sons).

    MATH  Google Scholar 

  8. M. J. Crowe. A History of Vector Analysis. Univ. of Notre Dame Press, 1967. Reprinted by Dover Publ. Co., 1985, 1994.

    Google Scholar 

  9. J. Dalbec. Straightening Euclidean invariants. Annals of Mathematics and Artificial Intelligence, Special Issue on Algebraic Approaches to Geometric Reasoning, in press.

    Google Scholar 

  10. C. Doran, D. Hestenes, F. Sommen, and N. Van Acker. Lie groups as spin groups. J. Math. Phys., 34:3642–3669, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. W. M. Dress and T. F. Havel. Fundamentals of the distance geometry approach to the problems of molecular conformation. In Proc. INRIA Workshop on Computer Aided Geometric Reasoning, 1987.

    Google Scholar 

  12. A. W. M. Dress and T. F. Havel. Distance geometry and geometric algebra. Found. Phys., 23:1357–1374, 1993.

    Article  MathSciNet  Google Scholar 

  13. T. F. Havel. Some examples of the use of distances as coordinates for Euclidean geometry. J. Symbolic Comput., 11:579–593, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Hestenes. Universal geometric algebra. Simon Stevin, 62:253–274, 1988.

    MathSciNet  MATH  Google Scholar 

  15. D. Hestenes. The design of linear algebra and geometry. Acta Appl. Math., 23:65–93, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus. D. Reidel Pub. Co., Dordrecht, NL, 1984.

    Book  MATH  Google Scholar 

  17. D. Hestenes and R. Ziegler. Projective geometry with Clifford algebra. Acta Appl. Math., 23:25–63, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. V. D. Hodge and D. Pedoe. Methods of Algebraic Geometry. Cambridge Univ. Press, U.K., 1968.

    Google Scholar 

  19. K. Menger. Untersuchungen über allgemeine Metrik. Math. Annal., 100:75–163, 1928.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. Najfeld and T. F. Havel. Derivatives of the matrix exponential and their computation. Adv. Appl. Math., 1995. In press.

    Google Scholar 

  21. J. J. Seidel. Distance-geometric development of two-dimensional euclidean, hyperbolic and spherical geometry. Simon Stevin, 29:32–50, 65–76, 1952.

    MathSciNet  Google Scholar 

  22. E. Snapper and R. J. Troyer. Metric Affine Geometry. Academic Press, 1971. Reprinted by Dover Publications, 1989.

    MATH  Google Scholar 

  23. N. White, editor. Theory of Matroids, volume 26 of Encyclopedia of Mathematics. Cambridge Univ. Press, UK, 1986.

    Google Scholar 

  24. N. L. White. Invariant-theoretic computation in projective geometry. In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, volume 6, pages 363–377. Amer. Math. Soc., 1991.

    Google Scholar 

  25. W. Whiteley. Invariant computations for analytic projective geometry. J. Symbolic Comput., 11:549–578, 1991.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Havel, T.F. (1995). Geometric Algebra and Möbius Sphere Geometry as a Basis for Euclidean Invariant Theory. In: White, N.L. (eds) Invariant Methods in Discrete and Computational Geometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8402-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8402-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4572-0

  • Online ISBN: 978-94-015-8402-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics