Skip to main content

Biomass and nutrient dynamics of dominant plant species from heathlands

  • Chapter
Heathlands

Part of the book series: Geobotany ((GEOB,volume 20))

Abstract

Primary production, litter production, nutrient uptake and nutrient loss are important characteristics of the functioning of any ecosystem. They determine the stocks and the flows of carbon and nutrients in the plant compartment of the ecosystem. These processes are rather well documented for the aboveground part of many plant communities: in grasslands (Sims & Singh 1978; Berendse 1983; Bobbink et al. 1989), arctic tundras (Johnson & Tieszen 1976; Chapin et al. 1986), forests (Pastor et al. 1984; Stachurski & Zimka 1975; Boerner 1984; Kost & Boerner 1985), wetlands (Small 1972a,b; Verhoeven & Arts 1987; Bernard et al. 1988; Wallén et al. 1988) and heathlands (Chapman 1967; Gimingham 1972; Chapman et al. 1975a,b; Berendse et al. 1987a,b; Wallén 1987). However, due to methodological difficulties reliable data on belowground productivity and nutrient turnover are scarce. This is a serious problem in most ecosystem studies as root production very often exceeds shoot production (Caldwell & Camp 1974; Coleman et al. 1976; Lauenroth & Whitman 1977; Sims & Singh 1978; Persson 1978), thus determining to a large extent the input (quantitatively and qualitatively) of organic matter and nutrients into the soil. So, in order to understand the functioning of a heath-land ecosystem, data on belowground processes should be included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D. Melillo, J.M. 1980. Litter decomposition:measuring relative contributions of organic matter and nitrogen to forest soils. Can. J. Bot. 58: 416–421.

    Google Scholar 

  • Abrahamson, W.G. Caswell, H. 1982. On the comparative allocation of biomass, energy, and nutrients in plants. Ecology 63: 982–991.

    Google Scholar 

  • Aerts, R. 1989a. The effect of increased nutrient availability on leaf turnover and aboveground productivity of two evergreen ericaceous shrubs. Oecologia 78: 115–120.

    Article  Google Scholar 

  • Aerts, R. 1989b. Aboveground biomass and nutrient dynamics of Calluna vulgaris and Molinia caeruela in a dry heath-land. Oikos 56: 31–38.

    Article  CAS  Google Scholar 

  • Aerts, R. 1989c. Nitrogen use efficiency in relation to nitrogen availability and plant community composition. In: Lambers, H., Cambridge, M.L., Konings, H. Pons, T.L. (Eds), Causes and consequences of variation in growth rate and productivity of higher plants, pp. 285–297. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Aerts, R. 1990. Nutrient use efficiency in evergreen and deci- duous species from heathlands. Oecologia 84: 391–397.

    Google Scholar 

  • Aerts, R. Berendse, F. 1988. The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Vegetatio 76: 63–69.

    Google Scholar 

  • Aerts, R. Berendse, F. 1989. Above-ground nutrient turnover and net primary production of an evergreen and a deciduous species in a heathland ecosystem. J. Ecol. 77: 343–356.

    Google Scholar 

  • Aerts, R. De Caluwe, H. 1989. Aboveground productivity and nutrient turnover of Molinia caerulea along an experimental gradient of nutrient availability. Oikos 54: 320–324.

    Google Scholar 

  • Aerts, R., Berendse, F., Klerk, N.M. Bakker, C. 1989. Root production and root turnover in two dominant species of wet heathlands. Oecologia 81: 374–378.

    Google Scholar 

  • Aerts, R., Berendse, F., De Caluwe, H. Schmitz, M. 1990. Competition in heathland along an experimental gradient of nutrient availability. Oikos 57: 310–318.

    Google Scholar 

  • Aerts, R., Wallèn, B. Malmer, N. 1992. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J. Ecol. 80: 131–140.

    Google Scholar 

  • Asman, W.A.H., Drukker, B. Janssen, A.J.J. 1988. Modelled historical concentrations and depositions of ammonia and ammonium in Europe. Atmospheric Environment 22: 359–367.

    Google Scholar 

  • Baan Hofman, T. Ennik G.C. 1980. Investigation into plant characters affecting the competitive ability of perennial rye-grass (Lolium perenne L.) Neth. J. Agric. Sci. 28: 97–109.

    Google Scholar 

  • Baan Hofman, T. Ennik, G.C. 1982. The effect of root mass of perennial ryegrass (Lolium perenne L.) on the competitive ability with respect to couchgrass (Elytrigia repens (L.) Desv). Neth. J. Agric. Sci. 30: 275–283.

    Google Scholar 

  • Barnes, P.W., Beyschlag, W., Ryel, R.J., Flint, S.D. Caldwell, M.M. 1990. Plant competition for light analyzed with a multispecies canopy model. III. Influence of canopy structure in mixtures and monocultures of wheat and wild oat. Oecologia 82: 560–566.

    Google Scholar 

  • Berendse, F. 1983. Interspecific competition and niche differentiation between Plantago lanceolata and Anthoxanthum odoratum in a natural hayfield. J. Ecol. 71: 379–390.

    Article  Google Scholar 

  • Berendse, F. 1985. The effect of grazing on the outcome of competition between plant populations with different nutrient requirements. Oikos 44: 35–39.

    Article  Google Scholar 

  • Berendse, F. 1990. Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J. Ecol. 78: 413–427.

    Article  Google Scholar 

  • Berendse, F. Aerts, R. 1987. Nitrogen-use-efficiency: a biologically meaningful definition ? Funct. Ecol. 1: 293296.

    Google Scholar 

  • Berendse, F. Elberse, W.T. 1989. Competition and nutrient losses from the plant. In: Lambers, H., Cambridge, M.L., Konings, H. Pons, T.L. (Eds), Causes and consequences of variation in growth rate and productivity of higher plants, pp. 269–284. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Berendse, F., Beltman, B., Bobbink, R., Kwant, R. Schmitz, M. 1987a. Primary production and nutrient availability in wet heathland ecosystems. Acta Oecol./Oecol. Plant. 8 (22): 265–279.

    Google Scholar 

  • Berendse, F., Oudhof, H. Bol, J. 1987b. A comparative study on nutrient cycling in wet heathland ecosystems I. Litter production and nutrient losses from the plant. Oecologia 74: 174–184.

    Google Scholar 

  • Berendse, F., Bobbink, R. Rouwenhorst, G. 1989. A comparative study on nutrient cycling in wet heathland ecosystems. II. Litter decomposition and nutrient mineralization. Oecologia 78: 338–348.

    Google Scholar 

  • Bernard, J.M., Solander, D. Kvet, J. 1988. Production and nutrient dynamics in Carex wetlands. Aquat. Bot. 30: 125147.

    Google Scholar 

  • Birk, E.M. Vitousek, P.M. 1986. Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology 67: 69–79.

    Article  Google Scholar 

  • Blair, G.J. Cordero, S. 1978. The phosphorus efficiency of three annual legumes. Plant Soil 50: 387–398.

    Article  CAS  Google Scholar 

  • Bobbink, R., Bik, L. Willems, J.H. 1988. Effects of nitrogen fertilization on vegetation structure and dominance of Brachypodium pinnatum (L.) Beauv. in chalk grassland. Acta Bot. Neerl. 37: 231–242.

    Google Scholar 

  • Bobbink, R., Den Dubbelden, K. Willems, J.H. 1989. Seasonal dynamics of phytomass and nutrients in chalk grassland. Oikos 55: 216–224.

    Google Scholar 

  • Bobbink, R., Heil, G.W. Raessen, M. 1990. Atmospheric deposition and canopy exchange in heathland ecosystems Dutch Priority Programme on Acidification, report 119, pp. 1–80.

    Google Scholar 

  • Boerner, R.E.J. 1984. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility. J. Appl. Ecol. 21: 1029–1040.

    Google Scholar 

  • Boot, R.G.A. 1989. The significance of size and morphology of root systems for nutrient acquisition and competition. In: Lambers, H., Cambridge, M.L., Konings, H. Pons, T.L. (Eds), Causes and consequences of variation in growth rate and productivity of higher plants, pp. 299–311. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Boot, R.G.A. Den Dubbelden, K.C. 1990. Effects of nitrogen supply on growth, allocation and gas exchange characteristics of two perennial grasses from inland dunes. Oecologia 85: 115–121.

    Google Scholar 

  • Boot, R.G.A. Mensink, M. 1990. Size and morphology of root systems of perennial grasses from contrasting habitats as affected by nitrogen supply. Plant Soil 129: 291–299.

    CAS  Google Scholar 

  • Bradshaw, A.D., Chadwick, M.J., Jowett, D. Snaydon, R.W. 1964. Experimental investigations into the mineral nutrition of several grass species. IV. Nitrogen level. J. Ecol. 52: 665–676.

    Google Scholar 

  • Brouwer, R. 1962a. Distribution of dry matter in the plant. Neth. J. Agric. Sci. 10: 361–376.

    Google Scholar 

  • Brouwer, R. 1962b. Nutritive influences on the distribution of dry matter in the plant. Neth. J. Agric. Sci. 10: 399–408.

    Google Scholar 

  • Caldwell, M.M. Camp, L.B. 1974. Belowground productivity of two cool desert communities. Oecologia 17: 123–130.

    Google Scholar 

  • Caldwell, M.M. Richards, J.H. 1986. Competing root systems: morphology and models of absorption. In: Givnish, T.J. (Ed), On the economy of plant form and function, pp. 251–273. Cambridge University Press, Cambridge.

    Google Scholar 

  • Chabot, B.F. Hicks, D.J. 1982. The ecology of leaf life spans. Ann. Rev. Ecol. Syst. 13: 229–259.

    Google Scholar 

  • Chapin, F.S. 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260.

    Google Scholar 

  • Chapin, F.S. Kedrowski, R.A. 1983. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslo-cation in evergreen and deciduous taiga trees. Ecology 64: 376–391.

    CAS  Google Scholar 

  • Chapin, F.S., McKendrick, J.D. Johnson. D.A. 1986_ Seasonal changes in carbon fractions in Alaskan tundra plants of differing growth form: implications for herbivory. J. Ecol. 74: 707–731.

    Google Scholar 

  • Chapman, S.B. 1967. Nutrient budgets for a dry heath ecosystem in the south of England. J. Ecol. 55: 677–689.

    Article  Google Scholar 

  • Chapman, S.B. 1979. Some interrelationships between soil and root respiration in lowland Calluna heathland in southern England. J. Ecol. 67: 1–20.

    Article  Google Scholar 

  • Chapman, S.B., Hibble, J. Rafarel, C.R. 1975a. Net aerial production by Calluna vulgaris on lowland heath in Britain. J. Ecol. 63: 233–258.

    Google Scholar 

  • Chapman, S.B., Hibble, J. Rafarel, C.R. 19756. Litter accumulation under Calluna vulgaris on a lowland heath in Britain. J. Ecol. 63: 259–271.

    Google Scholar 

  • Coleman, D.C., Andrews, R. Ellis, J.E. Singh, J.S. 1976. Energy flow and partitioning in selected man-managed and natural ecosystems. Agroecosystems 3: 45–54.

    Google Scholar 

  • De Smidt, J.T. 1977. Heathland vegetation in the Netherlands. Phytocoenologia 4: 258–316.

    Google Scholar 

  • Elberse, W.T., Van den Bergh, J.P. Dirven, J.G.P. 1983. Effects of use and mineral supply on the botanical composition and yield of old grassland on heavy-clay soil. Neth. J. Agric. Sci. 31: 63–88.

    Google Scholar 

  • Ennik, G.C. Baan Hofman, T. 1983. Variation in the root mass of ryegrass types and its ecological consequences. Neth. J. Agric. Sci. 31: 325–334.

    Google Scholar 

  • Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19.

    Article  Google Scholar 

  • Fitter, A.H. Setters, N.L. 1988. Vegetative and reproductive allocation of phosphorus and potassium in relation to biomass in six species of Viola. J. Ecol. 76: 617–636.

    Google Scholar 

  • Forrest, G.I. 1971. Structure and production of North Pennine blanket bog vegetation. J. Ecol. 59: 453–479.

    Article  Google Scholar 

  • French, D.D. 1988. Some effects of changing soil chemistry on decomposition of plant litters and cellulose on a Scottish moor. Oecologia 75: 608–618.

    Article  Google Scholar 

  • Frissel, M.J. 1981. The definition of residence times in ecological models. In: Clark, F.E. Roswall, T. (Eds), Terrestrial Nitrogen Cycles. Ecol. Bull. 33: 117–122.

    Google Scholar 

  • Gimingham, C.H. 1972. Ecology of heathlands. Chapman and Hall, London.

    Google Scholar 

  • Gray, J.T. 1983. Nutrient use by evergreen and deciduous shrubs in southern California. I. Community nutrient cycling and nutrient-use efficiency. J. Ecol. 71: 21–41.

    Google Scholar 

  • Grime, J.P. 1979. Plant strategies and vegetation processes. Wiley, Chichester.

    Google Scholar 

  • Hackett, C. 1965. Ecological aspects of the nutrition of Deschampsia flexuosa (L.) Trin. II. The effects of Al, Ca, Fe, K, Mn, N, P and pH on the growth of seedlings and established plants. J. Ecol. 53: 315–333.

    Google Scholar 

  • Hackett, C. 1967. Ecological aspects of the nutrition of Deschampsia flexuosa (L.) Trin. III Investigation of phosphorus requirement and response to aluminium in water culture, and a study of growth in soil. J. Ecol. 55: 831–840.

    Google Scholar 

  • Haukioja, E., Niemelä, P. Sirén, S. 1985. Foliage phenols and nitrogen in relation to growth, insect damage, and ability to recover after defoliation, in the mountain birch Benda pubescens sap. tortuosa. Oecologia 65: 214–222.

    Google Scholar 

  • Headley, A.D., Callaghan, T.V. Lee, J.A. 1985. The phosphorus economy of the evergreen tundra plant, Lycopodium annotinum. Oikos 45: 235–245.

    Google Scholar 

  • Heil, G.W. Bruggink, M. 1987. Competition for nutrients between Calluna vulgaris (L.) Hull and Molinia caerulea ( L.) Moench. Oecologia 73: 105–108.

    Google Scholar 

  • Hirose, T. Werger, M.J.A. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72: 520–526.

    Google Scholar 

  • Hunt, E.R., Weber, J.A. Gates, M. 1985. Effects of nitrate application on Amaranthus powellii Wats. Optimal allocation of leaf nitrogen for photosynthesis and stomatal conductance. Plant Physiol. 79: 619–624.

    Google Scholar 

  • Ingestad, T. 1979. Nitrogen stress in birch seedlings. II. N, K, P, Ca, and Mg nutrition. Physiol. Plant. 45: 149–157.

    Google Scholar 

  • Jefferies, T.A. 1915. Ecology of the purple heath grass (Moli-nia caerulea). J. Ecol. 3: 93–109.

    Article  Google Scholar 

  • Johnson, D.A. Tieszen, L.L. 1976. Above ground biomass allocation, leaf growth and photosynthetic patterns in tundra plant forms in arctic Alaska. Oecologia 24: 159–173.

    Google Scholar 

  • Karlsson, P.S. 1985. Photosynthetic characteristics and leaf carbon economy of a deciduous and an evergreen dwarfshrub: Vaccinium uliginosum L. and V. vitis-idaea L. Holarct. Ecol. 8: 9–17.

    Google Scholar 

  • Konings, H., Koot, E. Tijman-de Wolf, A. 1989. Growth characteristics, nutrient allocation and photosynthesis of Carex species from floating fens. Oecologia 80: 111–121.

    Google Scholar 

  • Kost, J.A. Boerner, R.E.J. 1985. Foliar nutrient dynamics and nutrient use efficiency in Cornus Florida. Oecologia 66: 602–606.

    Google Scholar 

  • Kruckeberg, A.R. 1954. The ecology of serpentine soils. III. Plant species in relation to serpentine soils. Ecology 35: 267–274.

    Google Scholar 

  • Kubiena, W.L. 1953. The soils of Europe. Murby, London. Lajtha, K. Klein, M. 1988. The effect of varying nitrogen and phosphorus availability on nutrient use by Larrea tridentata, a desert evergreen shrub. Oecologia 75: 348–353.

    Google Scholar 

  • Lambers, H. Dijkstra, P. 1987. A physiological analysis of genotypic variation in relative growth rate: Can growth rate confer ecological advantage ? In: Van Andel, J., Bakker, J.P. Snaydon, R.W. (Eds), Disturbance in Grasslands, pp. 237–252. Junk Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Lauenroth, W.K. Whitman, W.C. 1977. Dynamics of dry matter production in mixed-grass prairie in western North Dakota. Oecologia 27: 339–351.

    Google Scholar 

  • Loach, K. 1968. Seasonal growth and nutrient uptake in a Molinietum. J. Ecol. 56: 433–444.

    Article  CAS  Google Scholar 

  • Mahmoud, A. Grime, J.P. 1976. An analysis of competitive ability in three perennial grasses. New Phytol. 77: 431–435.

    Article  Google Scholar 

  • McClaugerty, C.A., Aber, J.D. Melillo, J.M. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63: 1481–1490.

    Google Scholar 

  • Melillo, J.M., Aber, J.D. Muratore, J.F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621–626.

    CAS  Google Scholar 

  • Mitchley, J. 1988. Control of relative abundance of perennials in chalk grassland in southern England. II. Vertical canopy structure. J. Ecol. 76: 341–350.

    Google Scholar 

  • Monk, C.D. 1966. An ecological significance of ever-greenness. Ecology 47: 504–505.

    Article  Google Scholar 

  • Monsi, M. Saeki, T. 1953. Über den Lichtfaktor in den _ Pflanzengesellschaften and seine Bedeutung für die Stoffproduktion. Jap. J. Bot. 14: 22–52.

    Google Scholar 

  • Mooney, H.A., Field, C., Gulmon, S.L. Bazzaz, F.A. 1981. Photosynthetic capacity in relation to leaf position in desert versus old-field annuals. Oecologia 50: 109–112.

    Google Scholar 

  • Moore, P. 1980. The advantages of being evergreen. Nature 285: 1168.

    Google Scholar 

  • Morton, A.J. 1977. Mineral nutrient pathways in a Molinietum in autumn and winter. J. Ecol. 65: 993–999.

    Article  CAS  Google Scholar 

  • Nicolai, V. 1988. Phenolic and mineral content of leaves influences decomposition in European forest ecosystems. 0ecologia 75: 575–579.

    Google Scholar 

  • Ohlson, M. Malmer, N. 1990. Total nutrient accumulation and seasonal variation in resource allocation in the bog plant Rhynchospora alba. Oikos 58: 100–108.

    Google Scholar 

  • Olff, H., Van Andel, J. Bakker, J.P. 1990. Biomass and shoot/root allocation of five species from a grassland succession series at different combinations of light and nutrient supply. Funct. Ecol. 4: 193–200.

    Google Scholar 

  • Ostman, N.L. Weaver, G.T. 1982. Autumnal nutrient transfer by retranslocation, leaching and litterfall in a chestnut-oak forest in southern Illinois. Can. J. For. Res. 12: 40–51.

    Google Scholar 

  • Pastor, J., Aber, J.D., McClaugherty, C.A. Melillo, J.M. 1984. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65: 256–268.

    Google Scholar 

  • Pearsall, W.H. Gorham, E. 1956. Production ecology. I. Standing crops of natural vegetation. Oikos 7: 193–201.

    Google Scholar 

  • Persson, H. 1978. Root dynamics in a young Scots pine stand in Central Sweden. Oikos 30: 508–519.

    Article  Google Scholar 

  • Persson, H. 1979. Fine-root production, mortality and decomposition in forest ecosystems. Vegetatio 41: 101–109.

    Article  Google Scholar 

  • Persson, H. 1980. Spatial distribution of fine-root growth, mortality and decomposition in a young Scots pine stand in central Sweden. Oikos 34: 77–87.

    Article  Google Scholar 

  • Persson, H. 1981. The effect of fertilization and irrigation on the vegetation dynamics of a pine-heath ecosystem. Vegetatio 46: 181–192.

    Article  Google Scholar 

  • Pfadenhauer, J. Lütke Twenhöven, F. 1986. Nährstoffökologie von Molinia caerulea and Carex acutiformis auf baumfreien Niedermooren des Alpenvorlandes. Flora 178: 157–166.

    Google Scholar 

  • Pielou, E.C.. 1989. Interspecific variation in relative growth rate: on ecological causes and physiological consequences. In: Lambers, H., Cambridge, M.L., Konings, H. Pons, T.L. (Eds), Causes and consequences of variation in growth rate and productivity of higher plants, pp. 45–68. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Poorter, H. Remkes, C. 1990. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83: 553–559.

    Google Scholar 

  • Reader, R.J. 1978. Contribution of overwintering leaves to the growth of three broad-leaved evergreen shrubs belong-ing to the Ericaceae family. Can. J. Bot. 56: 1248–1261.

    Google Scholar 

  • Reader, R.J. 1980. Effects of nitrogen fertilizer, shade and removal of new growth on longevity of overwintering bog ericad leaves. Can. J. Bot. 58: 1737–1743.

    Google Scholar 

  • Robinson, D. Rorison, I.H. 1983. A comparison of the responses of Lolium perenne L., Holcus lanatus L. and Deschampsia flexuosa (L.) Trin. to a localized supply of nitrogen. New Phytol. 94: 263–273.

    Google Scholar 

  • Robinson, D. Rorison, I.H. 1988. Plasticity in grass species in relation to nitrogen supply. Funct. Ecol. 2: 249–257.

    Google Scholar 

  • Rorison, I.H. 1968. The repsonse to phosphorus of some ecologically distinct plant species. New Phytol. 67: 913–923.

    Article  CAS  Google Scholar 

  • Rorison, I.H. 1985. Nitrogen source and the tolerance of Deschampsia flexuosa, Holcus lanatus and Bromus erectus to aluminium during seedling growth. J. Ecol. 73: 83–90.

    Article  CAS  Google Scholar 

  • Roswall, T. Granhall, U. 1980. Nitrogen cycling in a subarctic ombrotrophic mire. In: Sonesson, M. (Ed.), Ecology of a subarctic mire. Ecol. Bull. 30: 209–234.

    Google Scholar 

  • Schlesinger, W.H. Chabot, B.F. 1977. The use of water and minerals by evergreen and deciduous shrubs in Okefenokee Swamp. Botanical Gazette 138: 490–497.

    Article  CAS  Google Scholar 

  • Schulze, E.D., Fuchs, M. Fuchs, M.I. 1977. Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany. III The significance of the evergreen habit. Oecologia 30: 239–248.

    Google Scholar 

  • Shaver, G.R. 1981. Mineral nutrition and leaf longevity in an evergreen shrub, Ledum palustre ssp. decumbens. Oecologia 49: 362–365.

    Article  Google Scholar 

  • Shaver, G.R. 1983. Mineral nutrition and leaf longevity in Ledum palustre: the role of individual nutrients and the timing of leaf mortality. Oecologia 56: 160–165.

    Article  Google Scholar 

  • Simms, E.L. 1987. The effect of nitrogen and phosphorus addition on the growth, reproduction, and nutrient dynamics of two ericaceous shrubs. Oecologia 71: 541–547.

    Article  Google Scholar 

  • Sims, P.L. Singh, J.S. 1978. The structure and function of ten western North American grasslands. III Net primary production, turnover and efficiencies of energy capture and water use. J. Ecol. 66: 573–597.

    Google Scholar 

  • Singh, J.S., Lauenroth, W.K., Hunt, H.W. Swift, D.M. 1984. Bias and random errors in estimators of net root production: a simulation approach. Ecology 65: 1760–1764.

    Google Scholar 

  • Small, E. 1972a. Ecological significance of four critical elements in plants of raised Sphagnum peat bogs. Ecology 53: 498–503.

    Article  CAS  Google Scholar 

  • Small, E. 1972b. Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can. J. Bot. 50: 2227–2233.

    Google Scholar 

  • Spitters, C.J.T. Aerts, R. 1983. Simulation of competition for light and water in crop-weed associations. Aspects of Applied Biology 4: 467–483.

    Google Scholar 

  • Staaf, H. 1982. Plant nutrient changes in beech leaves during senescence as influenced by site characteristics. Acta Oecol./Oecol. Plant. 3: 161–170.

    Google Scholar 

  • Stachurski, A. Zimka, J.R. 1975. Leaf fall and the rate of litter deacy in some forest habitats. Ekol. Pol. 23: 103–108.

    Google Scholar 

  • Swift, M.J., Heal, O.W. Anderson, J.M. (Eds) 1979. De- composition in terrestrial ecosystems. Blackwell, Oxford.

    Google Scholar 

  • Tennant, D. 1975. A test of a modified line intersect method for estimating root length. J. Ecol. 63: 995–1001.

    Article  Google Scholar 

  • Tilman, D. 1984. Plant dominance along an experimental nutrient gradient. Ecology 65: 1445–1453.

    Article  Google Scholar 

  • Tilman, D. 1985. The resource-ratio hypothesis of plant succession. Am. Nat. 125: 827–852.

    Google Scholar 

  • Tilman, D. 1988. Plant strategies and the dynamics and structure of plant communities Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Tinhout, A. Werger, M.J.A. 1988. Fine roots in a Calluna heathland. Acta Bot. Neerl. 37: 225–230.

    Google Scholar 

  • Troelstra, S.R., Wagenaar, R. De Boer, W. 1990. Nitrification in Dutch heathland soils I. General soil characteristics and nitrification in undisturbed soil cores. Plant Soil 127: 179–192.

    Google Scholar 

  • Tyler, G., Gullstrand, G., Holmquist, K-A. Kjellstrand, A.M. 1973. Primary production and distribution of organic matter and metal elements in two heath ecosystems. J. Ecol. 61: 251–268.

    CAS  Google Scholar 

  • Van den Bergh, J.P. 1968. An analysis of yields of grasses in mixed and pure stands. Versl. Landbouwk. Onderz. 714.

    Google Scholar 

  • Van den Driessche, R. 1974. Prediction of mineral nutrient status of trees by foliar analysis. The Botanical Review 40: 347–394.

    Article  Google Scholar 

  • Van Praag, H.J., Sougnez-Remy, S., Weissen, F. Carletti, G. 1988. Root turnover in a beech and a spruce stand of the Belgian Ardennes. Plant Soil 105: 87–103.

    Google Scholar 

  • Van Vuuren, M.M.I. 1992. Effects of plant species on nutrient cycling in heathlands. Thesis, University of Utrecht.

    Google Scholar 

  • Van Vuuren, M.M.I., Aerts, R., Berendse, F. De Visser, W. 1992a. Nitrogen mineralization in heathland ecosystems dominated by different plant species. Biogeochemistry 16: 151–166.

    Google Scholar 

  • Van Vuuren, M.M.I., Berendse, F. De Visser, W. 1992b. Species and site differences in the decomposition of litter and roots from wet heathlands. Can. J. Bot. (in press).

    Google Scholar 

  • Verhoeven, J.T.A. Arts, H.H.M. 1987. Nutrient dynamics in small mesotrophic fens surrounded by cultivated land. II. N and P accumulation in plant biomass in relation to the release of inorganic N and P in the peat soil. Oecologia 72: 557–561.

    Google Scholar 

  • Verhoeven, J.T.A. Schmitz, M.B. 1991. Control of plant growth by nitrogen and phosphorus in mesotrophic fens. Biogeochemistry 12: 135–148.

    CAS  Google Scholar 

  • Vermeer, J.G. 1986a. The effect of nutrients on shoot biomass and species composition of wetland and hayfield communities. Acta Oecol./Oecol. Plant. 7: 31–41.

    Google Scholar 

  • Vermeer, J.G. 1986b. The effect of nutrient addition and lowering of the water table on shoot biomass and species composition of a wet grassland community (Cirsio-Molinietum Siss. et de Vries, 1942). Acta Oecol./Oecol. Plant. 7: 145–155.

    Google Scholar 

  • Vermeer, J.G. Berendse, F. 1983. The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio 53: 121–126.

    Google Scholar 

  • Vitousek, P.M. 1982. Nutrient cycling and nutrient use efficiency. Am. Nat. 119: 553–572.

    Google Scholar 

  • Wallén, B. 1987. Growth pattern and distribution of biomass of Calluna vulgaris on an ombrotrofic peat bog. Holarct. Ecol. 10: 73–79.

    Google Scholar 

  • Wallén, B., Falkengren-Grerup, U. Malmer, N. 1988. Biomass, productivity and relative rate of photosynthesis of Sphagnum at different water levels on a South Swedish peat bog. Holarct. Ecol. 11: 70–76.

    Google Scholar 

  • Westhoff, V. Den Held, A.J. 1969. Plantengemeenschappen in Nederland. Thieme, Zutphen (in Dutch).

    Google Scholar 

Download references

Authors

Editor information

R. Aerts G. W. Heil

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aerts, R. (1993). Biomass and nutrient dynamics of dominant plant species from heathlands. In: Aerts, R., Heil, G.W. (eds) Heathlands. Geobotany, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8230-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8230-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4231-6

  • Online ISBN: 978-94-015-8230-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics