Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 391))

Abstract

Measurements of the geomagnetic field made over the last few centuries provide maps of changes of magnetic flux on the core surface. This reveals a stationary, rather symmetrical, pattern of four main concentrations of flux with superimposed secular variation, much of it in the form of westward drift in low latitudes across the Atlantic hemisphere. The secular change is interpreted in terms of fluid flow at the top of the core, and models of recent secular change have been inverted to give estimates of the flow pattern. The stationary field pattern could be generated by dynamo action deep within the core, and simple kinematic models produce the observed four-fold symmetry with flux concentration beneath downwelling fluid. Much remains to be understood about the dynamo action of even simple fluid motions. The overlying mantle may exert a significant influence on both surface flow and deep convection; simple model calculations suggest temperature or heat flux variations around the core-mantle boundary will drive thermal winds which penetrate deep into the core and strongly influence the main convection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backus, G. E. (1968) Kinematics of geomagnetic secular variation in a perfectly conducting core. Phil. Trans. R. Soc. Lond., A 263, 239–263.

    Article  Google Scholar 

  • Backus, G. E. (1988) Bayesian inference in geomagnetism. Geophys. J. 92, 125–142.

    Article  Google Scholar 

  • Backus, G. E. and LeMouël, J-L. (1986) The region on the core-mantle boundary where a geostrophic velocity field can be determined from frozen-flux magnetic data. Geophys. J. R. Astr. Soc. 85, 617–628.

    Article  Google Scholar 

  • Bloxham, J. (1986) Models of the magnetic field at the core-mantle boundary. J. Geophys. Res. 91, 13,954–13,966.

    Article  Google Scholar 

  • Bloxham, J. and Gubbins, D. (1985) The secular variation of the earth’s magnetic field. Nature 317, 777–781.

    Article  Google Scholar 

  • Bloxham, J. and Gubbins, D. (1986) Geomagnetic Field Analysis-IV Testing the frozen-flux hypothesis. J. Geophys. Res. 84, 139–152.

    Google Scholar 

  • Bloxham, J. and Gubbins, D. (1987) Thermal core-mantle interactions. Nature 325, 511–513.

    Article  Google Scholar 

  • Bloxham, J. and Jackson, A. (1989) Simultaneous stochastic inversion for geomagnetic main field and secular variation-2 (1820–1980). J. Geophys. Res. 94, 15,753–15,769.

    Article  Google Scholar 

  • Bloxham, J. and Jackson, A. (1990) Lateral temperature variations at the core-mantle boundary deduced from the magnetic field. Geophys. Res. Lett. 17, 1997–2000.

    Article  Google Scholar 

  • Bloxham, J. and Jackson, A. (1991) Huid flow near the surface of earth’s outer core. Rev. Geophys. 29, 97–120.

    Article  Google Scholar 

  • Bloxham, J., Gubbins, D. and Jackson, A. (1989) Geomagnetic Secular Variation. Phil. Trans. R. Soc. Lond. 329, 415–502.

    Article  Google Scholar 

  • Braginsky, S. I. (1964) Kinematic models of the earth’s hydromagnetic dynamo. Geomagn. Aeron. 4, 572–583.

    Google Scholar 

  • Bullard, E. C and Gellman, H. (1954) Homogeneous dynamos and terrestrial magnetism. Phil. Trans. Roy. Soc. Lond. 247, 213–278.

    Article  Google Scholar 

  • Bullard, E. C. and Gubbins, D. (1977) Generation of magnetic fields by fluid motions of global scale. Geophys. Astrophys. Fluid Dyn. 8, 43–56.

    Article  Google Scholar 

  • Gibson, R. D. and Roberts, P. H. (1967) Some comments on the theory of homogeneous dynamos, in Magnetism and the cosmos 108–120, edited by W. R. Hindmarsh, F. J. Lowes, P. H. Roberts, and S. K. Runcorn, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Gubbins, D. (1972) Kinematic Dynamos. Nature Phys. Sci. 238, 119–122.

    Article  Google Scholar 

  • Gubbins, D. (1973) Numerical solutions of the dynamo problem. Phil. Trans. R. Soc. Lond., A 274, 493–521.

    Article  Google Scholar 

  • Gubbins, D. (1983) Geomagnetic field analysis I — Stochastic Inversion. Geophys. J. R. Astr. Soc. 73, 641–652.

    Article  Google Scholar 

  • Gubbins, D. (1991) Dynamics of the Secular Variation. Phys. Earth Planet. Int. 68, 170–182.

    Article  Google Scholar 

  • Gubbins, D. and Bloxham, J. (1984) Geomagnetic field analysis III — Magnetic fields on the core-mantle boundary. Geophys. J. R. Astr. Soc. 80, 696–713.

    Google Scholar 

  • Gubbins, D. and Bloxham, J. (1987) Morphology of the geomagnetic field and implications for the geodynamo. Nature 325, 509–511.

    Article  Google Scholar 

  • Gubbins, D. and Richards, M. (1986) Coupling of the core dynamo and mantle: thermal or topographic? Geophys. Res. Lett. 13, 1521–1524.

    Article  Google Scholar 

  • Hide, R. (1967) Motions of the earth’s core and mantle, and variations of the main geomagnetic field. Science 157, 55–56.

    Article  Google Scholar 

  • Hide, R. (1981) The magnetic flux linkage of a moving medium: A theorem and geophysical applications. J. Geophys. Res. 86, 11,681–11,687.

    Article  Google Scholar 

  • Hutcheson, K. (1990) Geomagnetic field modelling. Ph.D. Thesis, University of Cambridge.

    Google Scholar 

  • Hutcheson, K. and Gubbins, D. (1989) A model of the geomagnetic field for the 17th century. J. Geophys. Res. 95, 10,769–10,781.

    Google Scholar 

  • Jackson, A. and Bloxham, J. (1991) Mapping the fluid flow and shear near the core surface using the radial and horizontal components of the magnetic field. Geophys. J. 105, 199–212.

    Article  Google Scholar 

  • Köhler, M. D. and Stevenson, D. J. (1990) Modeling core fluid motions and the drift of magnetic field patterns at the CMB by use of topography obtained by seismic inversion. Geophys. Res. Lett. 17, 1473–1476.

    Article  Google Scholar 

  • Kumar, S. and Roberts, P. H. (1975) A three dimensional kinematic dynamo. Proc. R. Soc. 344, 235–258.

    Article  Google Scholar 

  • LeMouël, J-L., Gire, C. and Madden, T. (1985) Motions of the core surface in the geostrophic approximation. Phys. Earth Planet. Int. 39, 270–287.

    Article  Google Scholar 

  • Li, X. and Jeanloz, R. (1987) Measurement of the electrical conductivity of (Mg, Fe) SiO3 perovskite and a perovskite-dominated assemblage at lower mantle conditions. Geophys. Res. Lett. 95, 5067–5078.

    Google Scholar 

  • Lilley, F. E. M. (1970) On kinematic dynamos. Proc. R. Soc. 316, 153–167.

    Article  Google Scholar 

  • Lloyd, D. and Gubbins, D. (1990) Toroidal motion at the top of the earth’s core. Geophys. J. Int. 100, 455–467.

    Article  Google Scholar 

  • Peddie, N. W. (1982) International Geomagnetic Reference Field: the third generation. J. Geomag. Geoelectr. 34, 309–326.

    Article  Google Scholar 

  • Pekeris, C. L., Accad, Y. and Shkoller, B., (1973) Kinematic dynamos and the earth’s magnetic field. Phil. Trans. Roy. Soc. Lond. 275, 425–461.

    Article  Google Scholar 

  • Roberts, P. H. (1967) An Introduction to Magnetohydrodynamics. Elsevier, New York, 264 PP.

    Google Scholar 

  • Roberts, P. H. (1968) On the thermal instability of a rotating fluid sphere containing heat sources. Phil. Trans. Roy. Soc. Lond. 263, 93–117.

    Article  Google Scholar 

  • Roberts, P. H. and Scott, S. (1965) On the analysis of the secular variation, I, A hydromagnetic constraint: Theory. J. Geomagn. Geoelectr. 17, 137–151.

    Article  Google Scholar 

  • Shure, L., Parker, R. L. -and Backus, G. E. (1982) Harmonic splines for geomagnetic field modelling. Phys. Earth Planet. Interiors 28, 215–229.

    Article  Google Scholar 

  • Voorhies, C. and Backus, G. E. (1985) Steady flows at the top of the core from geomagnetic field models: the steady motions theorem. Geophys. Astrophys. Fluid Dyn. 34, 451–487.

    Google Scholar 

  • Zhang, K. and Gubbins, D. (1992a) On convection in the earth’s core forced by lateral temperature variations in the lower mantle. Geophys. J. Int. 108, 247–255.

    Article  Google Scholar 

  • Zhang, K. and Gubbins, D. (1992b) On imperfect convection in a rotating fluid shell at infinite Prandtl number. Submitted, J. Fluid Mech.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gubbins, D. (1993). Geomagnetism and Inferences for Core Motions. In: Stone, D.B., Runcorn, S.K. (eds) Flow and Creep in the Solar System: Observations, Modeling and Theory. NATO ASI Series, vol 391. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8206-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8206-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4245-3

  • Online ISBN: 978-94-015-8206-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics