Skip to main content

Frailty Models For Multiple Event Times

  • Chapter
Survival Analysis: State of the Art

Part of the book series: Nato Science ((NSSE,volume 211))

Abstract

In some clinical, epidemiologic and animal studies multiple events, possibly of different types, may occur to the same experimental unit at different times. Examples of such data include times to tumor detection, times from remission to relapse into an acute disease phase, and times to discontinuation of an experimental medication. Methods for the statistical analysis of such data need to account for heterogeneity between subjects. This can be achieved by incorporation of additional unobserved random effects into standard survival models. We concentrate on models including frailties — unobserved random proportionality factors applied to the time-dependent intensity function. In this paper we survey some such models, exhibit connections with extensions of the standard Andersen-Gill (1982) model for multiple event times that are reminiscent of the classical results of Greenwood and Yule (1920) on “accident — proneness”, and discuss methods of inference about the frailty distribution and regression parameters. The methods are illustrated by application to some animal tumor data of Gail, Santner and Brown (1980) and to data from a recently completed large multicenter clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aalen, O. (1988). Heterogeneity in survival analysis. Statistics in Medicine 7, 1121–1137.

    Article  Google Scholar 

  • Abu-Libdeh, H., Turnbull, B. W. and Clark, L. C. (1990). Analysis of multi-type recurrent events in longitudinal studies: application to a skin cancer prevention trial. Biometrics 46, 1017–1034.

    Article  Google Scholar 

  • Andersen, P. K. and Gill, R. D. (1982). Cox’s regression models for counting processes: a large sample study. Annals of Statistics 10, 1100–1120.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. R. (1972a). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society Series B 34, 187–220.

    MATH  Google Scholar 

  • Cox, D. R. (1972b). The statistical analysis of dependencies in point processes. In Stochastic Point Processes (P.A.W. Lewis, Ed.) Wiley, New York, 55–66.

    Google Scholar 

  • Cox, D. R. (1975). Partial likelihood. Biometrika 62, 269–276.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman and Hall, London.

    Google Scholar 

  • Crowder, M. (1989). A multivariate distribution with Weibull connections. Journal of the Royal Statistical Society Series B 51, 93–107.

    MathSciNet  MATH  Google Scholar 

  • Dixon, W. J., Brown, M. B., Engelman, L., Hill, M. A., and Jennrich (Eds.) (1988). BMDP Statistical Software Manual Volume 2. University of California Press, Berkeley.

    Google Scholar 

  • Feller, W. (1971). An Introduction to Probability Theory and its Applications, Vol. 2, 2’nd ed. Wiley, New York.

    MATH  Google Scholar 

  • Gail, M. H., Santner, T. J., and Brown, C. C. (1980). An analysis of comparative carcinogenesis experiments with multiple times to tumor. Biometrics 36, 255–266.

    Article  MathSciNet  MATH  Google Scholar 

  • Greenwood, M. and Yule, G. U. (1920). An enquiry into the nature of frequency distributions representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease as repeated accidents. Journal of the Royal Statistical Society 83, 255–279.

    Article  Google Scholar 

  • Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable distributions. Biometrika 73, 387–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Huster, W. J., Brookmeyer, R. and Self, S. G. (1989). Modelling paired survival data with covariates. Biometrics 45, 145–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. Wiley, New York.

    MATH  Google Scholar 

  • Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 457–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Karr, A. F. (1991). Point Processes and Their Statistical Inference (2’nd edition). Dekker, New York.

    MATH  Google Scholar 

  • Lagakos, S. W., Sommer, C. J. and Zelen, M. (1978). Semi-Markov models for partially censored data. Biometrika 65, 311–317.

    Article  MathSciNet  MATH  Google Scholar 

  • Lawless, J. F. (1987). Regression models for Poisson process data. Journal of the American Statistical Association 82, 808–815.

    Article  MathSciNet  MATH  Google Scholar 

  • Moss, A. J., Oakes, D., Benhorin, J., Carleen, E., and the Multi-Center Diltiazem Post-infarction Trial Research Group (1989). The interaction between diltiazem and left ventricular function after myocardial infarction. Circulation 80 Suppl. (IV), IV102–IV106.

    Google Scholar 

  • Multi-Center Diltiazem Post-infarction Trial Research Group (1988). The effect of diltiazem on mortality and reinfarction after myocardial infarction. New England Journal of Medicine 319, 385–392.

    Article  Google Scholar 

  • Neyman, J. and Scott. E. L. (1972). Processes of clustering and applications. In Stochastic Point Processes (P.A.W. Lewis, Ed.). Wiley, New York, 646–681.

    Google Scholar 

  • Oakes, D. (1981). Survival analysis: aspects of partial likelihood (with discussion). International Statistical Review 49, 235–264.

    Article  MathSciNet  MATH  Google Scholar 

  • Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical Association 84, 487–493.

    Article  MathSciNet  MATH  Google Scholar 

  • Vaupel, J. W., Mantom, K. G. and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16, 439–454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oakes, D. (1992). Frailty Models For Multiple Event Times. In: Klein, J.P., Goel, P.K. (eds) Survival Analysis: State of the Art. Nato Science, vol 211. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7983-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7983-4_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4133-3

  • Online ISBN: 978-94-015-7983-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics