Skip to main content

Inedible Gelatin and Glue

  • Chapter
Inedible Meat by-Products

Part of the book series: Advances in Meat Research Series ((ADMERE,volume 8))

Abstract

Gelatins are water-soluble protein substances derived by denaturing and partially hydrolyzing collagen, the fibrous protein abundant in animal connective tissues such as bone, cartilage, skin, and tendon. A variety of gelatin types are made commercially, as well as several kinds of animal glue, which is the oldest known form of gelatin. The description of a gelatin must specify which of the different collagen raw materials and different collagen-to-gelatin conversion processes were used. A useful description will also include values of certain physicochemical properties and will specify any special processing required for intended applications (such as foods, pharmaceuticals, photographic products, adhesives, etc.).

Now retired from Eastman Kodak Co.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhesives Age (1990). Census of Manufacturers. Adhesives Age33 (2), 34.

    Google Scholar 

  • Ammann-Brass, H. (Ed.) (1971). Restrainers in Photographic Gelatins: IAG Reports1965–69. Internationale Arbeitsgemeinschaft für Photogelatine (IAG). Fribourg, Switzerland.

    Google Scholar 

  • Ammann-Brass, H. (Ed.) (1984). Photographic Gelatin: IAG Reports1970–82. Internationale Arbeitsgemeinschaft für Photogelatine (IAG). Fribourg.

    Google Scholar 

  • Ammann-Brass, H. & Pouradier, J. (Ed.) (1985). Photographic Gelatin: IAG Reports1983. Internationale Arbeitsgemeinschaft für Photogelatine (IAG). Fribourg.

    Google Scholar 

  • Aoyogi, S., Matsumoto, T., Shima, Y. & Ishikawa, T. (1987). Usefulness of SDS minislab method in electrophoretic analysis of photographic gelatin. J. Photogr. Sci. 35, 158.

    Google Scholar 

  • Bachinger, H.P., Bruckner, P., Timpl, R. & Engel, J. (1978). The role of cis-trans isomerization of peptide bonds in the coil-triple helix conversion of collagen. Europ. J. Biochem. 90, 605.

    Article  Google Scholar 

  • Bachinger, H.P., Bruckner, P., Timpl, R., Prockop, D.J. & Engel, J. (1980). Folding mechanism of the triple helix in type-III collagen and type-III pNcollagen. Europ. J. Biochem. 106, 619.

    Article  Google Scholar 

  • Band, S.S. (Ed.) (1987). Photographic gelatin. 5th RPS Symp., Oxford, 2–6 September, 1985. The Royal Photographic Society, Bath, England, 292 pp.

    Google Scholar 

  • Barnstein, C.H. (1966). Gelatin. In Encyclopedia of Industrial Chemical Analysis, Vol.13 (F.D. Snell & L.S. Ettre, Eds.), pp. 361–75. John Wiley, New York.

    Google Scholar 

  • Beels, R. & Claes, F.H. (1977). Diffusion phenomena in gelatin sheets. Photogr. Sci. Eng. 21, 336.

    Google Scholar 

  • Beier, G. & Engel, J. (1966). The renaturation of soluble collagen. Products formed at different temperatures. Biochemistry5, 2744.

    Article  Google Scholar 

  • Blair, W.E. & Pearson, C.L. (1987). Good tack and open time help animal glue hold market share. Adhesives Age, June, pp. 32–35.

    Google Scholar 

  • Boedtker, H. & Doty, P. (1954). A study of gelatin molecules, aggregates and gels. J. Phys. Chem. 58, 968.

    Article  Google Scholar 

  • Borchard, W., Bremer, W. & Keese, A. (1980). The state diagram of the water-gelatin system. Colloid & Polym. Sci. 258, 516.

    Article  Google Scholar 

  • Borchard, W., Luft, B. & Reutner, P. (1986). Mixed crystal formation and glassy solidification in the system gelatin-water. J. Photograph. Sci. 34, 132.

    Google Scholar 

  • Borginon, H. Ketellapper, L.W. & Derouck, A. (1980). A comparison of different methods for the determination of the reducing properties of photographic gelatin. J. Photogr. Sci. 28 111.

    Google Scholar 

  • Bruckner, P. Eikenberry, E.F. & Prockop, D.J. (1981). Formation of the triple helix of type-I procollagen incellulo-A kinetic model based on cis-trans isomerization of peptide bonds. Europ. J. Biochem. 118 607.

    Google Scholar 

  • Bsi (1975). British Standard 757: Sampling and Testing Gelatins, p. 6. British Standards Institute, London.

    Google Scholar 

  • Burness, D.M. & Pouradier, J. (1977). Gelatin. III. The hardening of gelatin and emulsions. In The Theory of the Photographic Process,4th edn. (T.H. James, Ed.), pp. 77–87. Macmillan Publishing Co., New York.

    Google Scholar 

  • Chalepakis, G., Tanay, I. & Heidemann, E. (1985). How specific is the collagen decay in the manufacture of gelatine? Leder36, 2.

    Google Scholar 

  • Chatellier, J.Y., Durand, D. & Emery, J.R. (1985). Critical helix content in gelatin gels. Int. J. Biol. Macromol. 7, 311.

    Article  Google Scholar 

  • Chevé, J.L. (1971). Ètude de la polydispersité des gélatines au moyen des tamis moléculaires. J. Chim. Phys. Phys.-Chim. Biol. 68, 258.

    Google Scholar 

  • Clark, R.C. & Courts, A. (1977). The chemical reactivity of gelatin. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, Eds.), pp. 209–47. Academic Press, New York.

    Google Scholar 

  • Courts, A. (1980). Properties and uses of gelatin. In Applied Protein Chemistry ( R.A. Grant, Ed.), pp. 1–29. Applied Science Publishers, London.

    Google Scholar 

  • Croda Inc. (1990a). Pharmaceutical Product Guide. Croda Inc., 183 Madison Avenue, New York, NY 10016.

    Google Scholar 

  • Croda Inc. (1990b). Product Guide, 2nd edn. Croda Inc., 183 Madison Avenue, New York, NY 10016.

    Google Scholar 

  • Croome, R.J. (1974). Kinetics of development of rigidity in gelatin gels. J. Photogr. Sci. 22, 239.

    Google Scholar 

  • Croome, R.J. (1982a). Some aspects of the use of high molecular weight synthetic and natural polymers as additives or replacements for gelatin in photographic emulsions. J. Photogr. Sci. 30, 181.

    Google Scholar 

  • Croome, R.J. (1982b). The susceptibility to salt flocculation of chemically modified gelatins. J. Photogr. Sci. 30, 84.

    Google Scholar 

  • Dgf Stoess (1986). Konzepte, p. 12. Deutsche Gelatine-Fabriken Stoess & Co. GmbH, Eberbach, Germany.

    Google Scholar 

  • Djabourov, M. & Papon, P. (1983). Influence of thermal treatments on the structure and stability of gelatin gels. Polymer 24, 537.

    Article  Google Scholar 

  • Djabourov, M., Maquet, H.T., Leblond, J. & Papon, P. (1985). Kinetics of gelation of aqueous gelatin solutions. Brit. Poly. J. 17, 169.

    Article  Google Scholar 

  • Durand, D., Emery, J.R. & Chatellier, J.Y. (1985). Investigation of renaturation in gelatin gels. Int. J. Biol. Macromol. 7, 315.

    Article  Google Scholar 

  • Evans, R.W. (1987). Transmission optical holographic elements in dichromated gelatin. Proc. SPIE Int. Soc. Opt. Eng. 600, 38.

    Google Scholar 

  • Field, D.S. (1988). Tyrosine in photographic gelatin. J. Photogr. Sci. 36, 23.

    Google Scholar 

  • Fietzek, P.P. & Kuhn, K. (1976). The primary structure of collagen. Int. Rev. Connect. Tissue Res. 7, 1.

    Google Scholar 

  • Finch, C.A. & Jobling, A. (1977). The physical properties of gelatin. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, Eds.), pp. 249–94. Academic Press, New York.

    Google Scholar 

  • Flory, P.J. (1953). Principles of Polymer Chemistry, p. 569. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Flory, P.J. & Weaver, E.S. (1960). Helix-coil transitions in dilute aqueous collagen solutions. J. Am. Chem. Soc. 82, 4518.

    Article  Google Scholar 

  • Fujii, T. & Kusoki, Y. (1985). Non-gelatin components from lime-processed gelatins: Presence of lysinoalanine and histidinoalanine. J. Soc. Photogr. Sci. Technol. Japan48, 359.

    Google Scholar 

  • Fyson, J.R. (1984). Bleaching agents and diffusion through gelatin. J. Photogr. Sci. 32, 234.

    Google Scholar 

  • Graesser, W., Koepff, P.J. & Tomka, I. (1983). Gelatin, method for producing it and its use. US Pat., 4, 369, 069.

    Google Scholar 

  • Gmia (1982). Gelatin. Gelatin Manufacturers Institute of America, Inc., New York.

    Google Scholar 

  • Gmia (1986). Standard Methods for Sampling and Testing of Gelatins. Gelatin Manufacturers Institute of America, Inc., New York.

    Google Scholar 

  • Godard, P., Biebuyck, J.J., Daumerie, M., Naveau, H. & Mercier, J.P. (1978). Crystallization and melting of aqueous gelatin. J. Polym. Sci., Polym. Phys. Ed. 16, 1817.

    Article  Google Scholar 

  • Godard, P., Biebuyck, J.J., Barriat, P.A., Naveau, H. & Mercier, J.P. (1980). Kinetics of crystallization of aqueous gelatin solutions. Makromol. Chem. 181, 2009.

    Google Scholar 

  • Grand, R.J.A. & Stainsby, G. (1976). N-terminal amino acids and gelatin gelation. In Photographic Gelatin II ( R.J. Cox, Ed.), pp. 11–26. Academic Press, New York.

    Google Scholar 

  • Gross, S. & Rose, P.I. (1975). Nongelling components from gelatin gels: Extraction and identification. J. Photogr. Sci. 23, 33.

    Google Scholar 

  • Guest, C.C. (1987). Holography. In Encyclopedia of Physical Science and Tech-nology, Vol.6 ( R.A. Meyers, Ed.), p. 514. Academic Press Inc., New York.

    Google Scholar 

  • Halpern, M. (1990). Photographic Chemicals. In Specialty Chemicals, SRI Inter-national, Menlo Park, California, pp. 99–118.

    Google Scholar 

  • Harrington, W.F. & Karr, G.M. (1970). Collagen structure in solution. II. Analysis of refolding kinetics in terms of nucleation and growth process. Biochemistry9, 3725.

    Article  Google Scholar 

  • Harrington, W.F. & Rao, N.V. (1970). Collagen structure in solution. I. Kinetics of helix regeneration in single-chain gelatins. Biochemistry9, 3714.

    Article  Google Scholar 

  • Hauschka, P.V. & Harrington, W.F. (1970). Collagen structure in solution. V. Kinetic mechanism of refolding of cross-linked chains. Biochemistry9, 3754.

    Article  Google Scholar 

  • Hermel, H., Wetzel, R., Buder, E., Roth, C., Herbrich, H. & Legutke, H. (1991). Moisture, triple-helical content and brittleness of gelatin layers. J. Photogr. Sci. 39, 16.

    Google Scholar 

  • Hinterwaldner, R. (1977a). Raw materials. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, Eds.), pp. 295–314. Academic Press, New York.

    Google Scholar 

  • Hinterwaldner, R. (1977b). Technology of gelatin manufacture. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, Eds.), pp. 315–64. Academic Press, New York.

    Google Scholar 

  • Hopkins, W.J., Diefendorf, E.J. & Feairheller, S.H. (1985). A method of processing fresh butcher-hogskins. J. Amer. Leather Chem. Assoc. 80, 165.

    Google Scholar 

  • Hubbard, J.R. (1977) Animal glues. In Handbook of Adhesives ( I. Skeist, Ed.), pp. 139–51. Van Nostrand Reinhold, New York. Internationale Arbeitsgermeinschaft für Photogelatine (IAG). International Working Group for Photographic Gelatin. IAG, Bourg La Reine, France.

    Google Scholar 

  • Itoh, N. (1989). Modern manufacturing methods for photographic gelatin. J. Soc. Photogr. Sci. Tech. Japan52 (4), 329.

    Google Scholar 

  • Jacobson, R.E. (1976). The hydrolysis of gelatin by proteolytic enzymes and their use in photographic emulsion preparation. In Photographic Gelatin II(R.J. Cox, Ed.), pp. 233–51. Academic Press, New York.

    Google Scholar 

  • Janus, J. & Lyons, C.A. (1975). The nucleic acid contents of the IAG gelatins. J. Photogr. Sci. 23, 125.

    Google Scholar 

  • Janus, J., Kenchington, A.W. & Ward, A.G. (1951). Rapid method for the determination of the isoelectric point of gelatin using mixed-bed deionization. Research (London) 4, 247.

    Google Scholar 

  • Johns, P. (1977). The structure and composition of collagen-containing tissues. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, Eds.), pp. 31–72. Academic Press, New York.

    Google Scholar 

  • Jolley, J.E. (1970). The microstructure of photographic gelatin binders. J. Photogr. Sci. Eng. 14, 169.

    Google Scholar 

  • Jones, N.R. (1977). Uses of gelatin in edible products. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, Eds.), pp. 365–94. Academic Press, New York.

    Google Scholar 

  • Katz, E.P. & Li, S.-T. (1973). Structure and function of bone collagen fibrils. J. Mol. Biol. 80, 1.

    Article  Google Scholar 

  • Kenchington, A.W. & Ward, A.G. (1954). The titration curve of gelatin. Biochem. J. 58, 202.

    Google Scholar 

  • King, S.A., Rose, P.I. & Maskasky, J.E. (1990). Modified peptizer twinned grain silver halide emulsions and processes for their preparation. US Patent 4 942 120.

    Google Scholar 

  • Kobayashi, H., Sugimoto, K., Ohno, T. & Mizusawa, S. (1989). Electrochemical detection of reducing sugars in photographic gelatins. J. Photogr. Sci. 37, 49.

    Google Scholar 

  • Koepff, P. (1980). Use of gel electrophoresis in the manufacture of gelatin-inert 2nd generation gelatin. Leder31 (5), 83.

    Google Scholar 

  • Kragh, A.M. (1977). Swelling, adsorption and the photographic uses of gelatin. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, Eds.), pp. 439–74. Academic Press, New York.

    Google Scholar 

  • Leach, A.A. & Eastoe, J.E. (1977). The chemical examination of gelatin. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, Eds.), pp. 475–506. Academic Press, New York.

    Google Scholar 

  • Levinson, G.I.P. (1977). Diffusion transfer and monobaths. In The Theory of the Photographic Process, 4th edn. ( T.H. James, Ed.), pp. 466–80. Macmillan Publishing Co., New York.

    Google Scholar 

  • Lewis, M.S. & Piez, K.A. (1964). Sedimentation-equilibrium studies of the molecular weight of single and double chains from ratskin collagen. Biochemistry3, 1126.

    Article  Google Scholar 

  • Light, N.D. & Bailey, A.J. (1982). Covalent crosslinks in collagen, In Methods in Enzymology, Part A, Extracellular Matrix, Vol.82 (L.W. Cunningham & D.W. Frederiksen, Eds.), pp. 360–72. Academic Press, New York.

    Google Scholar 

  • Lorry, D. & Vedrines, M. (1985). Determination of molecular weight distribution of gelatines by HPSEC. In Photographic Gelatin. IAG Reports1983(H. Ammann-Brass, Ed.), p. 35. IAG, Fribourg, Switzerland.

    Google Scholar 

  • Lower, E.S. (1983a). Utilising gelatin: Some applications in the coatings, adhesives and allied industries. Pigm. Resin Technol. 12 (7), 9.

    Article  Google Scholar 

  • Lower, E.S. (1983b). Utilising gelatin: Some applications in the coatings, adhesives and allied industries-2. Pigm. Resin Technol. 12 (8), 9.

    Article  Google Scholar 

  • Marshall, A.S. & Petrie, S.E.B. (1980). Thermal transitions in gelatin and aqueous gelatin solutions. J. Photogr. Sci. 28, 128.

    Google Scholar 

  • Marshall, A.S. & Petrie, S.E.B. (1981). Thermal transitions and physical aging in gelatin. Proc. N. Amer. Thermal Analysis Soc. Conf. 11, 183.

    Google Scholar 

  • Maskasky, J.E. (1989a). A comparison of oxidized and non-oxidized gelatins. I. Silver ion binding. J. Imaging Sci. 33, 10.

    Google Scholar 

  • Maskasky, J.E. (1989b). A comparison of oxidized and non-oxidized gelatins. II. Precipitation of tabular grain emulsions. J. Imaging Sci. 33, 13.

    Google Scholar 

  • Maxey, C.R. & Palmer, M.R. (1976). The isoelectric point distribution of gelatin. In Photographic Gelatin II ( R.J. Cox, Ed.), pp. 27–36. Academic Press, New York.

    Google Scholar 

  • Mccroskery, P.A., Wood, S. & Harris, E.D. (1973). Gelatin: A poor substrate for a mammalian collagenase. Science182, 70.

    Article  Google Scholar 

  • Miller, A.T. & Karmas, E. (1985). Age-related changes of bovine corium. J. Amer. Leather Chem. Assoc. 80, 106.

    Google Scholar 

  • Mitchell, J.R. (1976). Rheology of gels J. Texture Studies7, 313.

    Article  Google Scholar 

  • Moll, F. (1989). The oxidation of gelatin. J. Photogr. Sci. 37, 14.

    Google Scholar 

  • Moll, F.J. & Wagner, K. (1989). Determination of cysteine/cystine in gelatin. J. Photogr Sci. 37, 19.

    Google Scholar 

  • Moll, F., Mücke, B., Wagner, K., Gareis, H., Graesser, W. & Koepff, P. (1991). Production of a silver halide emulsion. US Patent 4 992 362.

    Google Scholar 

  • Nimni, M. (1988). (Ed.) Collagen: Biochemistry, Biotechnology and Molecular Biology, Vol. 3. CRC Press Inc., Boca Raton.

    Google Scholar 

  • Noel, C., Renotte, Y. & Lion, Y. (1990). The primitive emulsion as a tool for gelatin classification. J. Photogr. Sci. 38, 20.

    Google Scholar 

  • Norland, R.E. (1977). Fish glue. In Handbook of Adhesives. (I. Skeist, Ed.), Van Nostrand Reinhold, New York; General Information Bulletin 1- Photoengraving Glue. Norland Products Inc., 695 Joyce Kilmer Ave., New Brunswick, NJ, pp. 152–7.

    Google Scholar 

  • Ohno, T., Morikawa, M., Irie, H. & Muto, G. (1980a). Analysis of nucleic acid bases in photographic gelatins by high-performance liquid chromatography. J. Photogr. Sci. 28, 23.

    Google Scholar 

  • Ohno, T., Misuzawa, S., Itoh, M., & Muto, G. (1980b). Analysis of free nucleic acid bases in photographic gelatin by liquid chromatography. J. Photogr. Sci. 28, 238.

    Google Scholar 

  • Pagi (1977). Testing Methods for Photographic Gelatins, 3rd edn. Photographic and Gelatin Industries, Photo-Sensitized Materials Manufacturers’ Assoc., Tokyo, Japan.

    Google Scholar 

  • Piez, K.A. (1968). Molecular weight determination of random coil polypeptides from collagen by molecular sieve chromatography. Anal. Biochem. 26, 305.

    Article  Google Scholar 

  • Piez, K.A. (1987). Collagen. In Encyclopedia of Polymer Science and Engineering, 2nd edn., Vol.3 (J. Kroschwitz, Ed.), pp. 699–727. John Wiley & Sons, New York.

    Google Scholar 

  • Pouradier, J. (1973). Formation des gels de gélatine. C.R. Acad. Sci. 277, 1093.

    Google Scholar 

  • Pouradier, J. (1977). Gelatin. II. Properties of gelatin in relation to its use in the preparation of photographic emulsions. In The Theory of the Photographic Process, 4th edn. ( T.H. James, Ed.), pp. 67–76. Macmillan Publishing Co., New York.

    Google Scholar 

  • Pouradier, J. & Rondeau, A. (1968). On the methionine sulphoxide of gelatin. J. Photogr. Sci. 16, 68.

    Google Scholar 

  • Preston, B.N. & Meyer, F.A. (1971). Physical behavior of gelatin gels: A simple model for connective tisue. Biopolymers10, 35.

    Article  Google Scholar 

  • Riimaki, T.A. & Middleman, S. (1974). The effect of shear rate on the kinetics of gelation. Macromolecules7, 675.

    Article  Google Scholar 

  • Rose, P.I. (1987). Computer-assisted modeling of gelatin properties: Effects of peptide size and alpha-chain sequence. J. Photogr. Sci. 34, 114.

    Google Scholar 

  • Rose, P.I. (1977). Gelatin. I. General properties. In The Theory of the Photographic Process, 4th edn. ( T.H. James, Ed.), pp. 51–67. MacMillan Publishing Co., New York.

    Google Scholar 

  • Rose, P. & Gross, S. (1975). Non-gelling components from gelatin gels: Extraction and identification. J. Photogr. Sci. 23, 59.

    Google Scholar 

  • Rose, P.I. & Kaplan, C.J. (1985). Analysis for methionine in gelatin and evidence of its involvement in reduction of gold (III). In Photographic Gelatin. IAG Reports1983 ( H. Ammann-Brass, Ed.), pp. 168–79. IAG, Fribourg, Switzerland.

    Google Scholar 

  • Rose, P.I. & Suarez, S.S. (1984). Hexose sugars in photographic gelatins. In Photographic Gelatin. IAG Reports1970–1982 ( H. Ammann-Brass, Ed.), pp. 134–41. IAG, Fribourg, Switzerland.

    Google Scholar 

  • Rose, P.I., Suarez, S.S. & Bronson, J.L. (1979). Gelatin molecular weight distribution by gel filtration and high pressure liquid chromatography. Paper presented at The Royal Photographic Society Fourth Conference on Photographic Gelatin, Oxford, September 1979.

    Google Scholar 

  • Saunders, P.R. & Ward, A.G. (1954). An absolute method for the rigidity modulus of gelatin gels. In Proc. 2nd Int. Congr. Rheol. ( V.G.W. Harrison, Ed.), p. 284. Academic Press, New York.

    Google Scholar 

  • Saunders, P.R. & Ward, A.G. (1955). Mechanical properties of degraded gelatins. Nature176, 26.

    Article  Google Scholar 

  • Scholtan, W., Lange, H., Rosenkranz, H. & Moll, F. (1974). Bestimmung des Molekulargewichts and der Molekulargewichtsverteilung von Gelatine mit Hilfe der Gelchromatographie and der Ultrazentrifuge. Coll. Polym. Sci. 252, 949.

    Article  Google Scholar 

  • Silver, F.H. & Trelstad, R.L. (1981). Physical properties of type I collagen in solution: Structure of a-chains and ß-and y-components and two-component mixtures. Biopolymers20, 359.

    Article  Google Scholar 

  • Sjolinder, S. (1986). Dichromated gelatin and light sensitivity. J. Imaging Sci. 30, 151.

    Google Scholar 

  • Sri International (1987). Water soluble polymers. Chemical Economic Handbook, July. SRI International, Menlo Park, California.

    Google Scholar 

  • Stainsby, G. (1977). The physical chemistry of gelatin in solution. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, EDS.), pp. 109–36. Academic Press, New York.

    Google Scholar 

  • Stainsby, G. (1987). Gelatin gels. In Collagen as a Food (A.M. Pearson, T.R. Dutson & A.J. Bailey, Eds.) Adv. Meat Res. 4, 209.

    Google Scholar 

  • Sterman, M.D., Faust, M.A., Genova, D.J., Curme, H.G. & Johnson, M.F. (1972). Effect of chemical crosslinks on the thermal stability of conformation in swollen gelatin films In Photographic Gelatin (R.J. Cox, Ed.), pp 113–120. Academic Press, New York.

    Google Scholar 

  • Stickley, F.L. (1986). The biodegradation of gelatin and its problems in the photographic industry. J. Photogr. Sci. 34, 111.

    Google Scholar 

  • Stryer, L. (1982). Biochemistry, 2nd edn., pp. 185–204. W.H. Freeman and Co., San Francisco.

    Google Scholar 

  • Te Nijenhuis, K. (1981). Investigation into the ageing process in gels of gelatin/ water systems by the meaurement of their dynamic moduli. Part I. Phenomenology. Colloid & Polymer Sci. 259, 522.

    Article  Google Scholar 

  • Todd, A. (1961). Rigidity factor of gelatin gels. Nature191, 567.

    Article  Google Scholar 

  • Tomka, I. (1979). Electrophoresis as a routine tool to investigate photographic gelatins. Paper presented at The Royal Photographic Society Fourth Conference on Photographic Gelatin, Oxford, September 1979.

    Google Scholar 

  • Tomka, I. (1982). Photographic material. US Patent 4 360 590.

    Google Scholar 

  • Tomka, I. (1983). Die Makromolekulare Charakterisierung der Gelatine. Chimia37, 33.

    Google Scholar 

  • Tomka, I., Bohonek, J., Spuhler, A. & Ribeaud, M. (1975). Structure and formation of gelatin gel. J Photogr. Sci. 23, 97.

    Google Scholar 

  • Torchia, D.A., Hiyama, Y., Sarkar, S.K., Sullivan, C.E. & Young, P.E. (1985). Multinuclear magnetic resonance studies of collagen molecular structure and dynamics. Biopolymers24, 65.

    Article  Google Scholar 

  • Traub, W. & Piez, K.A. (1971). Chemistry and structure of collagen. In Advances in Protein Chemistry, Vol.25 (C.B. Anfinsen, J.T. Edsall & F.M. Richards, Eds.), pp. 243–352. Academic Press, New York.

    Google Scholar 

  • Umberger, J.Q. (1967). Solution and gelation of gelatin as related to solvent structure. Photogr. Sci. Eng. 11, 385.

    Google Scholar 

  • Us Department pf Commerce & Bureau of The Census (1987). Census of Manufacturers, Adhesives and Sealants, Industry 2891. US Government Printing Office, Washington DC.

    Google Scholar 

  • Usp (1980). The United States Pharmacopeia, 20th Rev. The United States Pharmacopeial Convention, Inc., Rockville, MD.

    Google Scholar 

  • Veis, A. (1964). The Macromolecular Chemistry of Gelatin. Academic Press, New York.

    Google Scholar 

  • Veis, A. (1970). In Biological Polyelectrolytes (A. Veis, Ed.), pp. 211–73. Marcel Dekker, New York.

    Google Scholar 

  • Vera, V.D., Gratacos, E. & Cot, J. (1977). The effect of hydrogen peroxide on collagen. Part II. The use of hydrogen peroxide as a sole decomposition agent in a two-stage process for gelatin manufacture. Leder28 (10), 161.

    Google Scholar 

  • Viro, F. (1980). Gelatin. In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edn., Vol.11, p. 714. John Wiley & Sons, New York.

    Google Scholar 

  • Wainewright, F.W. (1977). Physical tests for gelatin and gelatin products. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, Eds.), pp. 507–34. Academic Press, New York.

    Google Scholar 

  • Wetzel, R., Buder, E., Hermel, H. & Huttner, A. (1987). Conformations of different gelatins in solutions and in films. An analysis of circular dichroism (CD) measurements. Coll. & Polym. Sci. 265, 1036.

    Google Scholar 

  • Wood, P.D. (1977). Technical and pharmaceutical uses of gelatin. In The Science and Technology of Gelatin (A.G. Ward & A. Courts, Eds.), pp. 413–37. Academic Press, New York.

    Google Scholar 

  • Xu, K., Zhang, L. & Sun, L. (1989). Identification and quality control of Ejiao (donkey-skin) gelatin. Yaowu Fenxi Zazhi9 (6), 332.

    Google Scholar 

  • Yannas, I.V. (1972). Collagen and gelatin in the solid state. J. Macromol. Sci. Revs. Macromol. Chem. C7(1), 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Rose, P.I. (1992). Inedible Gelatin and Glue. In: Pearson, A.M., Dutson, T.R. (eds) Inedible Meat by-Products. Advances in Meat Research Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7933-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7933-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7935-5

  • Online ISBN: 978-94-011-7933-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics