Skip to main content

Abstract

Fluoroelastomer discoveries and the prospects for future developments are reviewed. The first fluoroelastomer was poly (2-fluorobutadiene) which though an excellent rubber, had no unusual properties. It was then noted that certain copolymers of vinylidene fluoride were flexible and ethylene/trifluoromethylethylene copolymers were rubbery. Intensive research to meet defense and aviation needs for rubbers with better heat and solvent resistance led to the discovery of rubbery vinylidene fluoride copolymers with fluoroolefins. Of these the copolymer with hexafluoropropylene and the terpolymer which contained tetrafluoroethylene met the needs and became mainstays of the market for high temperature elastomers. Their properties and many improvements in these products are detailed. Advancing aerospace needs for low temperature flexibility led to the fluorosilicones which sacrificed solvent resistance and high temperature stability. Though wide ranging research to correct these deficiencies was largely unsuccessful, one commercial product of exceptional stability emerged. It is a rubbery copolymer of tetrafluoroethylene with a perfluorovinyl ether.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Plunkett, U.S. 2,230,654 (1941) to Du Pont.

    Google Scholar 

  2. W.E. Mochel et al, Ind. Eng. Chem. 40, 2285 (1948).

    Article  Google Scholar 

  3. T.A. Ford, U.S. 2,458,054 (1949) to Du Pont.

    Google Scholar 

  4. W.E. Hanford and J.R. Roland, U.S. 2,468,664 (1949) to Du Pont.

    Google Scholar 

  5. H.E. Schroeder, U.S. 2,484,664 (1949) to Du Pont.

    Google Scholar 

  6. M.E. Conroy et al, Rubber Age 76, 543 (1955);

    Google Scholar 

  7. C.B. Griffin and J.C. Montermoso, Ibid. 77, 559 (1955).

    Google Scholar 

  8. A.F. Henning, F.B. Downing and J.D. Park, U,S. 2,406,794 (1946) to Du Pont.

    Google Scholar 

  9. S. Dixon, D.R. Rexford and J.S. Rugg, Ind. Eng. Chem. 49, 1687 (1957); D.R. Rexford, U.S. 3,051,677 (1962) to Du Pont.

    Google Scholar 

  10. J.R. Pailthorp and H.E. Schroeder, U.S. 2,968,649 (1961) to Du Pont.

    Google Scholar 

  11. O.K. Johannson, Can. Pat. 570,580 (1959) and U.S. 3,002,951 (1961); E.O. Brown Can. Pat. 586,871 (1959) all to Dow Corning.

    Google Scholar 

  12. R.G. Arnold, A.L. Barney and D.C. Thompson, Rubber Chem. and Technol. 46 (3), 619 (1973).

    Article  Google Scholar 

  13. D.A. Barr and R.N. Haszeldine, J.Chem.Soc. 1881 (1955); S.B. Rose, U.S. 3,065,214 (1962) to I.C. I.

    Google Scholar 

  14. H.C. Brown, J. Polymer Sci. 44, 9 (1960).

    Article  Google Scholar 

  15. W.J. Middleton et al, J. Polymer Sci. A3, 4115 (1965); A.L. Barney et al, J. Polymer Sci. A1, 4, 2617 (1966).

    Google Scholar 

  16. A.L. Moran and D.B. Pattison, Rubber World 103, 37 (1971).

    Google Scholar 

  17. W.W. Schmiegel, Kautsch. & Gummi 31, 137 (1978); Angew. Makrolmol. Chem. 76/77 39 (1979).

    Google Scholar 

  18. D. Apotheker and P.J. Krusic, U.S. 4,214,060 to Du Pont; D. Apotheker et al, Rubber Chem. Technol. 55, 1004 (1982).

    Google Scholar 

  19. W.R. Brasen and C.S. Cleaver, U.S. 3,467,635 (1969) to Du Pont.

    Google Scholar 

  20. T.W. Ray and C.E. Ivy, Paper 68, International Corrosion Forum, New Orleans, LA, 1984.

    Google Scholar 

  21. H.R. Alcock and R.L. Kugel, J. Am. Chem. Soc. 87, 4216 (1965); H.R. Alcock et al, Inorg. Chem. 5, 1709 (1966).

    Google Scholar 

  22. S.H. Rose, J. Polymer Chem. Part B 6, 837 (1968).

    Google Scholar 

  23. H.S. Eleuterio and R.W. Meschke, U.S. 3,358,003 (1967) to Du Pont.

    Google Scholar 

  24. J.F. Harris and D.I. McCane, U.S. 3,291,843 (1965) to Du Pont; D.C. England et al, Proc. R.A. Welch Conf. on Chemical Research XXVI 193 (1982).

    Google Scholar 

  25. G.A. Gallagher, U.S. 3,069,401 (1962) to Du Pont.

    Google Scholar 

  26. A.L. Barney, W.J. Keller and N.M. van Gulick, J. Polymer Sci. Al, 8, 1091 (1970).

    Article  Google Scholar 

  27. A.L. Barney. G.H. Kalb and A.A. Khan, Rubber Chem. and Technol. 44, 660 (1971).

    Article  Google Scholar 

  28. D.B. Pattison, U.S. 3,467,638 (1969) and U.S. 3,876,654 (1975) both to Du Pont.

    Google Scholar 

  29. H.E. Schroeder, Rubber Chem. Technol. 57-No.3 , G86 (1984).

    Google Scholar 

  30. J.T. Hill, J. Makromol. Sci., Chem. A8(3) 499 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Elsevier Science Publishing Co., Inc.

About this paper

Cite this paper

Schroeder, H. (1986). Advances in Fluoroelastomers. In: Seymour, R.B., Kirshenbaum, G.S. (eds) High Performance Polymers: Their Origin and Development. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-7073-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-7073-4_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-7075-8

  • Online ISBN: 978-94-011-7073-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics