Skip to main content

Characterization of Mononuclear Copper-Nitrogen Oxide Complexes: Models of NOx Binding to Isolated Active Sites in Copper Proteins

  • Chapter
Bioinorganic Chemistry of Copper

Abstract

Detailed examination of the interactions of simple nitrogen oxides, NxOy n-, with metal ions has become increasingly important for understanding the role of NxOy n-species in numerous biochemically and environmentally significant processes. Metal-mediated reactions of nitrogen oxides are ubiquitous within the global nitrogen cycle, in which the various forms of nitrogen are interconverted and distributed throughout the world.1 For example, metalloenzymes containing molybdenum, iron, or copper are involved in every stage of denitrification, the dissimilatory process by which some bacteria use NO3 - and NO2 - as terminal electron acceptors to release gaseous NO, N2O, and N2 (Figure 1).2 Environmental consequences of denitrification include the depletion of sources of nitrogen necessary for plant growth and the production of the greenhouse gas and ozone destroyer N2O. Moreover, excess NO3 -, a pollutant that contributes to eutrophication of lakes and rivers, can be removed from waste water by denitrification in a useful bioremedial application.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. M. H. Kroneck, J. Beuerle, W. Schumacher, in Degradation of Environmental Pollutants by Microorganisms and their Metalloenzymes, H. Sigel, A. Sigel, Eds. (Marcel Dekker, New York, 1992), vol. 28, pp. 455–505.

    Google Scholar 

  2. C. C. Delwiche, Eds., Denitrification, Nitrification, and Atmospheric Nitrous Oxide (John Wiley & Sons, New York, 1981).

    Google Scholar 

  3. W. J. Payne, Denitrification (John Wiley & Sons, New York, 1981).

    Google Scholar 

  4. L. I. Hochstein, G. A. Tomlinson, Ann. Rev. Microbiol. 42, 231–261 (1988).

    Article  CAS  Google Scholar 

  5. W. G. Zumft, A. Viebrock, H. Korner, in The Nitrogen and Sulphur Cycles, J. A. Cole, S. J. Ferguson, Eds. (Cambridge University Press, Cambridge, MA, 1988), pp. 245–280.

    Google Scholar 

  6. P. M. H. Kroneck, W. G. Zumft, Denitrification in Soil and Sediment, 1–20 (1990).

    Google Scholar 

  7. A. H. Stouthamer, in Biology of Anaerobic Microorganisms, A. J. B. Zehnder, Eds. (Wiley, New York, 1988), pp. 245–301.

    Google Scholar 

  8. R. B. Mellor, J. Ronnenberg, W. H. Campbell, S. Diekmann, Nature 355, 717–719 (1992).

    Article  CAS  Google Scholar 

  9. J. R. J. Lancaster, Amer. Sci. 80, 248–259 (1992).

    Google Scholar 

  10. T. G. Traylor, V. S. Sharma, Biochemistry 31, 2847–2849 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. S. H. Snyder, Science 257, 494–496 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. D. S. Bredt, S. H. Snyder, Neuron 8, 3–11 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. L. J. Ignarro, Biochem. Pharm. 41, 485–490 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. S. A. Waldman, F. Murad, Pharmacol Rev. 39, 163–196 (1987).

    PubMed  CAS  Google Scholar 

  15. J.-C. Drapier, C. Pellat, Y. Henry, J. Biol. Chem. 266, 10162–10167 (1991).

    PubMed  CAS  Google Scholar 

  16. M. Sano, T. Matsubara, Inorg. Chinu Acta 152, 53–54 (1988).

    Article  CAS  Google Scholar 

  17. M. Masuko, H. Iwasaki, T. Sakurai, S. Suzuki, A. Nakahara, J. Biochem. 96, 447–454 (1984).

    PubMed  CAS  Google Scholar 

  18. T. Kakutani, H. Watanabe, K. Arima, T. Beppu, J. Biochem. 89, 453–461 (1981).

    PubMed  CAS  Google Scholar 

  19. T. Kakutani, H. Watanabe, K. Arima, T. Beppu, J. Biochem. 89, 463–472 (1981).

    PubMed  CAS  Google Scholar 

  20. S. Suzuki, T. Sakurai, A. Nakahara, M. Masuko, H. Iwasaki, Biochim. Biophys. Acta 827, 190–192 (1985).

    Article  CAS  Google Scholar 

  21. J. W. Godden et al., Science 253, 438–442 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. D. M. Dooley, R. S. Moog, M.-Y. Iiu, W. J. Payne, J. LeGall, J. Biol. Chem. 263, 14625–14628 (1988).

    PubMed  CAS  Google Scholar 

  23. H. Iwasaki, S. Noji, S. Shidara, J. Biochem. 78, 355–361 (1975).

    PubMed  CAS  Google Scholar 

  24. M.-Y. Iiu, M.-C. Liu, W. J. Payne, J. LeGall, J. Bacteriol. 166, 604–608 (1986).

    Google Scholar 

  25. C. L. Hulse, B. A. Averill, J. M. Tiedje, J. Am. Chem. Soc. 111, 2322–2323 (1989).

    Article  CAS  Google Scholar 

  26. R. W. Ye, I. Toro-Suarez, J. M. Tiedje, B. A. Averill, J. Biol. Chem. 266, 12848–12851 (1991).

    PubMed  CAS  Google Scholar 

  27. M. A. Jackson, J. M. Tiedje, B. A. Averill, FEBS Lett 291, 41–44 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. B. Salvato et al., Biochemistry 28, 680–84 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. A. C. F. Gorren, E. de Boer, R. Wever, Biochim. Biophys. Acta 916, 38–47 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. A. J. M. Schoot Uiterkamp, FEBS Lett. 20, 93–96 (1972).

    Article  CAS  Google Scholar 

  31. A. J. M. Schoot Uiterkamp, H. van der Deen, H. C. J. Berendsen, J. F. Boas, Biochim. Biophys. Acta 372, 407–425 (1974).

    Article  CAS  Google Scholar 

  32. R. S. Himmelwright, N. C. Eickman, E. I. Solomon, Biochem. Biophys. Res. Commun. 81, 237–242 (1978).

    Article  PubMed  CAS  Google Scholar 

  33. R. S. Himmelwright, N. C. Eickman, E. I. Solomon, Biochem Biophys. Res. Commun. 86, 628–634 (1979).

    Article  PubMed  CAS  Google Scholar 

  34. H. van der Deen, H. Hoving, Biochemistry 16, 3519–3525 (1977).

    Article  PubMed  Google Scholar 

  35. J. Verplaetse, P. V. Tornout, G. Defreyn, R. Witters, R. Lontie, Eur. J. Biochem. 95, 327–331 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. C. T. Martin et al., Biochemistry 20, 5147–5155 (1981).

    Article  PubMed  CAS  Google Scholar 

  37. G. Rotilio, L. Mosrpurgo, M. T. Graziani, M. Brunori, FEBS Lett. 54, 163–166 (1975).

    Article  PubMed  CAS  Google Scholar 

  38. D. J. Spira, E. I. Solomon, Biochem Biophys. Res. Commun. 112, 729–736 (1983).

    Article  PubMed  CAS  Google Scholar 

  39. J. W. Whittaker, unpublished observations.

    Google Scholar 

  40. G. W. Brudvig, T. H. Stevens, S. I. Chan, Biochemistry 5275–5285 (1980).

    Google Scholar 

  41. S. Suzuki et al., Biochem. Biophys. Res. Commun. 164, 1366–1372 (1989).

    Article  PubMed  CAS  Google Scholar 

  42. M. E. Murphy, H. Sies, Froc. Natl. Acad. Sci. USA 88, 10860–10864 (1991).

    Article  CAS  Google Scholar 

  43. H. Nasri, Y. Wang, B. H. Huynh, W. R. Scheidt, J. Am. Chem. Soc. 113, 719–721 (1991).

    Article  Google Scholar 

  44. H. Nasri, J. A. Goodwin, W. R. Scheidt, Inorg. Chem. 30, 185–191 (1990).

    Article  Google Scholar 

  45. M. G. Finnegan, A. G. Lappin, W. R. Scheidt, Inorg. Chem. 29, 181–185 (1990).

    Article  CAS  Google Scholar 

  46. H. Nasri, Y. Wang, B. H. Huynh, F. A. Walker, W. R. Scheidt, Inorg. Chem. 30, 1483–1489 (1991).

    Article  CAS  Google Scholar 

  47. M. H. Barley, M. R. Rhodes, T. J. Meyer, Inorg. Chem. 26, 1746–1750 (1987).

    Article  CAS  Google Scholar 

  48. D. Sellmann, I. Barth, F. Knoch, M. Moll, Inorg. Chem. 29, 1822–1826 (1990).

    Article  CAS  Google Scholar 

  49. D. W. Pipes, M. Bakir, S. E. Vitols, D. J. Hodgson, T. J. Meyer, J. Am. Chem. Soc. 112, 5507–5514 (1990).

    Article  CAS  Google Scholar 

  50. F. Bottomley, in Reactions of Coordinated Ligands, P. S. Braterman, Ed. (Plenum Press, New York, 1989), vol. 2, pp. 115–222.

    Chapter  Google Scholar 

  51. P. P. Paul, K. D. Karlin, J. Am. Chem. Soc. 113, 6331–6332 (1991).

    Article  CAS  Google Scholar 

  52. P. P. Paul et al., J. Am. Chem. Soc. 112, 2430–2432 (1990).

    Article  CAS  Google Scholar 

  53. N. W. Isaacs, C. H. L. Kennard, J. Chem. Soc. (A) 386–389 (1969).

    Google Scholar 

  54. K. A. Klanderman, W. C. Hamilton, I. Bernal, Inorg. Chim. Acta 23, 117–129 (1977).

    Article  CAS  Google Scholar 

  55. D. L. Cullen, E. C. Lingafelter, Inorg. Chem. 10, 1264–1268 (1971).

    Article  Google Scholar 

  56. S. Takagi, M. D. Joesten, P. G. Lenhert, J. Am. Chem. Soc. 97, 444–445 (1975).

    Article  CAS  Google Scholar 

  57. S. Takagi, M. D. Joesten, P. G. Lenhert, Acta Crystallogr. B31, 596–598 (1975).

    CAS  Google Scholar 

  58. S. Klein, D. Reinen, J. Sol. State Chem. 32, 311–319 (1980).

    Article  CAS  Google Scholar 

  59. D. Mullen, G. Heger, D. Reinen, Sol. State Commun. 17, 1249–1252 (1975).

    Article  CAS  Google Scholar 

  60. I. M. Procter, F. S. Stephens, J. Chem. Soc. (A) 1248–1255 (1969).

    Google Scholar 

  61. A. Walsh, B. Walsh, B. Murphy, B. J. Hathaway, Acta Crystallogr. B37, 1512–1520 (1981).

    CAS  Google Scholar 

  62. F. S. Stephens, J. Chem. Soc. (A) 2081–2087. (1969).

    Google Scholar 

  63. S. Trofimenko Frog. Inorg. Chem. 34, 115–210 (1986).

    Article  CAS  Google Scholar 

  64. A. Shaver, in Comprehnsive Coordination Chemistry, G. Wilkinson, R. D. Gillard, J. A. McCleverty, Eds. (Pergamon Press, Oxford, 1987), vol. 2, pp. 245–259.

    Google Scholar 

  65. K. Niedenzu, S. Trofimenko, Top. Curr. Chem. 131, 1–37 (1986).

    Article  CAS  Google Scholar 

  66. N. Kitajima et al., J. Am. Chem. Soc. 114, 1277–1291 (1992).

    Article  CAS  Google Scholar 

  67. S. Trofimenko, J. C. Calabrese, J. S. Thompson, Inorg. Chem. 26, 1507–1514 (1987).

    Article  CAS  Google Scholar 

  68. S. Trofimenko, J. C. Calabrese, P. J. Domaille, J. S. Thompson, Inorg. Chem. 28, 1091–1101 (1989).

    Article  CAS  Google Scholar 

  69. W. B. Tolman, Inorg. Chem. 30, 4878–4880 (1991).

    Article  Google Scholar 

  70. J. A. Ibers, R. H. Holm, Science 209, 223–235 (1980).

    Article  PubMed  CAS  Google Scholar 

  71. N. D. Yordanov, V. Terziev, B. G. Zhelyazkowa, Inorg. Chim. Acta 58, 213–216 (1982).

    Article  Google Scholar 

  72. M. Mercer, R. T. M. Fraser, J. Inorg. Nucl. Chem. 25, 525–534 (1963).

    Article  CAS  Google Scholar 

  73. M. P. Doyle, B. Siegfried, J. J. Hammond, J. Am. Chem. Soc. 98, 1627–1629 (1976).

    Article  CAS  Google Scholar 

  74. S. M. Carrier, C. E. Ruggiero, W. B. Tolman, G. B. Jameson, J. Am. Chem. Soc. 114, 4407–4408 (1992).

    Article  CAS  Google Scholar 

  75. For example, see: (a) Hendriks, H. M. J.; Birker, P. J. M. W. L.; Rijn, J. v.; Verschoor, G. C; Reedijk, J. J. Am. Chem. Soc. 1982, 104, 3607–3617.

    Article  CAS  Google Scholar 

  76. Engelhardt, L. M.; Pakawatehai, C; White, A. H. J. Chem. Soc., Dalton Trans. 117–123(1985).

    Google Scholar 

  77. C. Mealli, C. S. Arcus, J. L. Wilkinson, T. J. Marks, J. A. Ibers, J. Am. Chem. Soc. 98, 711–718(1976).

    Article  CAS  Google Scholar 

  78. J. H. Enemark, R. D. Feltham, Coor. Chem. Rev. 13, 339–406 (1974).

    Article  CAS  Google Scholar 

  79. R. D. Feltham, J. H. Enemark, in Topics in Stereochemistry, R. D. Feltham, J. H. Enemark, Eds. (Wiley, New York, 1981), vol. 12, pp. 155–215.

    Chapter  Google Scholar 

  80. D. M. P. Mingos, D. J. Sherman, in Advances in Inorganic Chemistry, A. G. Sykes, Eds. (Academic Press, Inc., 1989), vol. 34, pp. 293–377.

    Google Scholar 

  81. N. Kitajima, K. Fujisawa, Y. Morooka, J. Am. Chem. Soc. 112, 3210–3212 (1990). (b) N. Kitajima, personal communication.

    Article  CAS  Google Scholar 

  82. S. M. Carrier, C. E. Ruggiero, W. B. Tolman, W. E. Antholine, and J. W. Whittaker, to be submitted for publication.

    Google Scholar 

  83. E. I. Solomon, M. J. Baldwin, M. D. Lowery, Chem. Rev. 92, 521–542 (1992).

    Article  CAS  Google Scholar 

  84. See M. L. Brader, D. Borchardt, M. F. Dunn, J. Am. Chem. Soc. 114, 4480–4486 (1992) and references therein.

    Article  CAS  Google Scholar 

  85. T. N. Sorrell, A. S. Borovik, Inorg. Chem. 26, 1957–1964 (1987).

    Article  CAS  Google Scholar 

  86. G. Palmer, Biochem Soc. Trans. 13, 548–560 (1985).

    PubMed  CAS  Google Scholar 

  87. R. Han, G. Parkin, J. Am. Chem. Soc. 113, 9707–08 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Chapman & Hall, Inc.

About this chapter

Cite this chapter

Tolman, W.B., Carrier, S.M., Ruggiero, C.E., Antholine, W.E., Whittaker, J.W. (1993). Characterization of Mononuclear Copper-Nitrogen Oxide Complexes: Models of NOx Binding to Isolated Active Sites in Copper Proteins. In: Karlin, K.D., Tyeklár, Z. (eds) Bioinorganic Chemistry of Copper. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6875-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6875-5_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6877-9

  • Online ISBN: 978-94-011-6875-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics