Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 332))

Abstract

Formulations on multibody dynamics are shown to be suitable for the development of methodologies for the impact simulation and crashworthiness design of vehicles. The proposed design methods comprise a range of computer aided tools of increasing complexity and accuracy which can be used with greater advantage and efficiency in the different crashworthiness design stages. The key issue in the use of such rigid and flexible multibody formulations is their capability to model and simulate efficiently the behavior of complex systems experiencing material and geometric nonlinear deformations while undergoing gross motion. The proposed multibody based crashworthiness design methods and associated multibody dynamics tools require information about the structural nonlinear behavior of specific parts of the vehicle structures which can be obtained from numerical or experimental tests of specific structural components and subsequently used in the formulations. Alternatively, the behavior of such components can be directly and efficiently incorporated through the use of appropriate nonlinear finite element procedures. This hybrid feature lends to the present design tools flexibility, ease of use and efficiency gains, as a result of a better understanding of the crash phenomena with particular emphasis in the interaction of the gross motion with different collapse mechanisms. Formulations for the sensitivity analysis and optimization of mechanical systems are also presented allowing for the design of optimum crash characteristics of energy absorption devices. The capabilities of the design tools presented herein are demonstrated with several applications to different vehicles types in different crash-impact scenarios. It is shown that the same formulations are applicable to enhanced occupant multibody models allowing extended injury assessment capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Emori, R. I. (1968) Analytical Approach to Automobile Collision, Automobile Engineering Conference, SAE Paper No. 680016.

    Google Scholar 

  2. Tani, M. and Emori, R. I. (1970) A Study of Automobile Crashworthiness, SAE Trans., SAE Paper No. 700175,.

    Google Scholar 

  3. Kamal, M. M. (1970) Analysis and Simulation of Vehicle to Barrier Impact, International Automobile Safety Conference, SAE Paper No. 700414.

    Google Scholar 

  4. Lin, K. H. (1973) A Rear-end Barrier Impact simulation Model for Unibody Passenger Cars, SAE Trans. 82: Paper 730156.

    Google Scholar 

  5. Dressier, C. J. and Schorry, R. E. (1979) High Speed Impact and Aggressivity Analysis of the CALSPAN/Chrysler Research Safety Vehicles (RSV), 3rd International Conference on Vehicle Structural Mechanics, SAE Paper No. 790993.

    Google Scholar 

  6. Pifko, A. B. and Winter, R. (1981) Theory and Applications of Finite Element Analysis to Structural Crash Simulation” J. Computers and Structures, 13, pp277–285.

    Article  Google Scholar 

  7. Hayduk, R. J., Winter, R., Pifko, A. B., and Fesanella, E. L. (1983) Application of the Non-linear Finite Element Computer Program DYCAST to Aircraft Crash Analysis, Structural Crashworthiness, Eds. N. Jones and T. Wierzbicky, Butterworths, London, England, pp.283–307.

    Google Scholar 

  8. Haug, E., Arnaudea, F., Du Bois, J. and Rouvay, A. (1983) Static and Dynamic Finite Element Analysis of Structural Crashworthiness in the Automotive and Aerospace Industries, Structural Crashworthiness, Eds. N. Jones and T. Wierzbicky, Butterworths, London, England, pp. 175–217.

    Google Scholar 

  9. Du Bois, P. and Chedmall, J. F. (1987) Automotive Crashworthiness Performance on a Supercomputer, SAE Trans., SAE paper No. 870565.

    Google Scholar 

  10. Pereira, M. S., Nikravesh, P., Gim, G. and Ambrósio, J. (1987) Dynamic Analysis of Roll-over and Impact of Vehicles, XVIII Bus and Coach Experts Meeting, Budapest, Hungary.

    Google Scholar 

  11. Sato, T. B. (1966) Dynamical Considerations in Automobile Collisions, J. of the Society of Automotive Engineers of Japan, 20, No. 5.

    Google Scholar 

  12. Nikravesh, P.E., Chung, I.S. and Benedict, R.L. (1983) Plastic hinge approach to vehicle simulation using a plastic hinge technique, J. Comp. Struct. 16, 385–400.

    Article  Google Scholar 

  13. Wittlin, G. (1983) Aircraft crash dynamics: modeling, verification and application, Structural Crashworthiness (N. Jones, T. Wierzbicki Eds.), Butterworths, London, England, 259–282.

    Google Scholar 

  14. Ambrósio, J.A.C. and Pereira, M.S. (1994) Flexibility in multibody dynamics with applications to crashworthiness, Computer-Aided Analysis of Rigid and Flexible Mechanical Systems (M.S. Pereira and J.A.C. Ambrósio Eds.), Series E: Applied Sciences — Vol.268, Kluwer, Dordrecht, Netherlands, 199–232.

    Google Scholar 

  15. Ambrósio, J.A.C., Nikravesh, P.E. (1992) Elastic-plastic deformations in multibody dynamics, Nonlinear Dynamics 3, 85–104.

    Article  Google Scholar 

  16. Pifko, A. B. and Winter, R. (1981)Theory and Applications of Finite Element Analysis to Structural Crash Simulation, J. Computers and Structures, 13, pp277–285.

    Article  Google Scholar 

  17. Haug, E. (1989) The PAM-CRASH Code as an Efficient tool for Crashworthiness Simulation and Design, Second European Cars/trucks Simulation Symposium, Schliersee, Germany, May 22–24.

    Google Scholar 

  18. Halquist, J. O. (1982) Theoretical Manual for DYNA-3D, Lawrence Livermore Laboratory.

    Google Scholar 

  19. Belytschko, T. and Kenedy, J. M. (1986) WHAMS-3D, An Explicit 3D Finite Element Program, KBS2 Inc. P. O. Box 453, Willow Springs, IL 60480.

    Google Scholar 

  20. Nikravesh, P. E. (1998) Computer Aided Analysis of Mechanical Systems, Prentice-Hall.

    Google Scholar 

  21. Roberson, R. E. and Schwertassek, R. (1988) Dynamics of Multibody Sytems, Springer-Verlag.

    Google Scholar 

  22. Haug, E. J. (1989) Computer Aided Kinematics and Dynamics of Mechanical Systems, Volume 1: Basic Methods, Allyn and Bacon.

    Google Scholar 

  23. Shabana, A. (1989) Dynamics of Multibody Sytems, Wiley.

    Google Scholar 

  24. García de Jalon, J. and Bayo, E. (1993) Kinematic and Dynamic Simulation of Multibody Systems — The Real Time Challenge, Springer-Verlag, N.Y..

    Google Scholar 

  25. Pereira M. S. and Ambrósio J. A. C., Eds., (1994) Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, Series E: Applied Sciences — Vol.268, Kluwer, Dordrecht, Netherlands.

    Google Scholar 

  26. Schielen, W. (1990) Multibody Systems hanbook, Springer-Verlag, Heidelgerg, Germany.

    Book  Google Scholar 

  27. Nikravesh, P. E. (1990) Systematic Reduction of Multibody Equations of Motion To a Minimal Set, Int. J. Non-Linear Mechanics, 25, 143–151.

    Article  MATH  Google Scholar 

  28. Shampine, L. F. and Gordon, M. K. (1975) Computer Solution of Ordinary Differential Equations: The initial Value Problem, Freeman, San Francisco, USA.

    Google Scholar 

  29. Baumgarte, J.(1972) Stabilization of Constraints and Integrals of Motion, Computer Methods in Applied Mechanics Engineering, 1.

    Google Scholar 

  30. Ambrósio, J. A. C. Silva, M. P. T., and Gonçalves, J. P. (1995) Development of Energy Absorbing Devices Using a Kinetostatic Multibody Dynmics Methodology, Int. J. Crashworthiness, 1, No. 2.

    Google Scholar 

  31. Lankarani, H.M. and Nikravesh, P.E.(1994) Continuous contact force models for impact analysis in multibody systems, Nonlinear Dynamics, 5(2), 193–207.

    Google Scholar 

  32. Pereira, M. S. and Proença, P. L. (1991) Dynamic Analysis of Spatial Flexible Multibody Systems Using Joint Coordinates”, Int. J. Num. Meth. in Engng, 32, 1799–1812.

    Article  MATH  Google Scholar 

  33. Ambrósio, J. A. C. and Nikravesh, P. E., (1992) Elastic-Plastic Deformation In Multibody Dynamics, Nonlinear Dynamics, 3, 85–104.

    Article  Google Scholar 

  34. Shabana, A., and Wehage, R. (1983) Variable Degree of Freedom Component Mode Analysis of Inertia Variant Flexible Mechanical Systems, ASME J. of Mech. Trans, and Auto. Design, 105, pp371–378.

    Article  Google Scholar 

  35. Dias, J.M.and Pereira, M.S. (1995) Dynamics of Flexible Mechanical Systems With Contct-Impct and Plastic Deformations, J. of Nonlinear Dynamics, 8, 491–512.

    Google Scholar 

  36. Anceau, J. H., Drazetic, P. and Ravalard, I. (1992) Plastic Hinges Behaviour in the Multibody Systems, Mécanique Matériaux Électricit é, n° 444, France.

    Google Scholar 

  37. Kecman, D. (1983) Bending Collapse of Rectangular and Square section Tubes, Int. J. of Mech. Sci, 25(9–10), 623–636.

    Article  Google Scholar 

  38. Winmer, A. (1977) Einfluss der Belastungsgeshwindigheit auf das Festigkeits und Verformungsverhaten am Beispiel von Kraftfarhzengen”, ATZ 77(10), 281–286.

    Google Scholar 

  39. Pereia, M.S., Ambrósio, J..A.. and Dias, J.M., Crashworthiness Analysis and Design Using Rigid-Flexible Multibody Dynamics With Application to Train Vehicles, Int. J. Numerical Methods in Engng, (accepted).

    Google Scholar 

  40. Ambrósio, J.A., Pereira, M.S. and Dias, J.M., Distributed and Discrete Nonlinear Deformations on Multibody Dynamics, Nonlinear Dynamics, (accepted).

    Google Scholar 

  41. Pereira M. S., Drazetic P. and Ravalard Y., “An Hybrid Method For Impact Analysis of Rigid-Flexible Structural Systems Undergoing Gross Motion”, submited I Impact Engng.

    Google Scholar 

  42. BRITISH RAIL (1992) Structural Design Load Cases for Passenger Carrying Vehicle Bodies, BRB-GM/TT0079, Issue 1, Rev. A.

    Google Scholar 

  43. Ambrósio J A and Nikravesh P E. (1992) Elastic-plastic deformations in multibody dynamics, Nonlinear Dynamics,, 3, 85–104.

    Article  Google Scholar 

  44. Greewood D T (1965) Principles of Dynamics, Englewood Cliffs, Prentice-Hall.

    Google Scholar 

  45. Ambrósio J A (1991) Elastic-Plastic Large Deformation of Flexible Multibody Systems in Crash Analysis, University of Arizona.

    Google Scholar 

  46. Ni, C.-M. (1973) Impact Response of curved box beam columns with large global and local deformations, AIAA/ASME/SAE 14th Structures Structural Dynamics, and Material Conference, Williamsburg, Virginia, USA. March 20–22.

    Google Scholar 

  47. ABAQUS, Version 5.3 (1993) Hibitt, Karlson & Sorensen, Inc.,.

    Google Scholar 

  48. Dynamic Crash Tests: Dynamic Test of a Vehicle Against an Obstacle (1993) Technical Report n. TRAINCOL/T7.2-F, SOREFAME, Portugal.

    Google Scholar 

  49. Silva M. T., Gonçalves I P., Ambrósio J A and Faria, L. (1994) New shock absorbing device for automobiles, Technical Report CEMUL/ECIA, Lisbon, Institute Superior Técnico.

    Google Scholar 

  50. Dias, J.M. and Pereira, M.S. (1995) Application of Multibody Dynamics to the Crashworthiness Optimization of Vehicle Structures, Computational Dynamics in Multibody Systems, Eds. M.S. Pereira and J.A.C. Ambrósio, KLUWER.

    Google Scholar 

  51. Bennett, I A., Lin, K. H. and Nelson, M. F. (1976) The Application of Optimization Techniques to Problems of Automobile Crashworthiness”, SAE Trans., 86, 2255–2262.

    Google Scholar 

  52. Song, J. O. (1986) An Optimization Method for Crashworthiness Design”, Proc. Sixth Int. Conf. Vehicle Structural Mechanics, Detroit, MI, 39–46.

    Google Scholar 

  53. Lust, R. (1992) Structural Optimization with Crashworthiness Constraints”, Structural Optimization, 4, 85–89.

    Article  Google Scholar 

  54. Dias, I and Pereira, M. S. (1994) Design for Vehicle Crashworthiness Using Multibody Dynamics, I. J. Vehicle Design, 15, 3/4, 563–577.

    Google Scholar 

  55. Vanderplaats, G. (1987) ADS-A Fortran Program for Automated Design Synthesis, Version 2.01, Eng. Design Optimization Inc., Ca, USA.

    Google Scholar 

  56. Vanderplaats, G., and Moses, F. (1973) Structural Optimization by Methods of Feasible Directions”, J. Comp. & Struct., 3, 739–755.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ambrósio, J.A.C., Pereira, M.S. (1997). Multibody Dynamic Tools for Crashworthiness and Impact. In: Ambrósio, J.A.C., Pereira, M.F.O.S., da Silva, F.P. (eds) Crashworthiness of Transportation Systems: Structural Impact and Occupant Protection. NATO ASI Series, vol 332. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5796-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5796-4_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6447-7

  • Online ISBN: 978-94-011-5796-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics