Skip to main content

Uses of biological spectral weighting functions and the need of scaling for the ozone reduction problem

  • Chapter
UV-B and Biosphere

Part of the book series: Advances in vegetation science ((AIVS,volume 17))

Abstract

In several phases of assessing implications of stratospheric ozone reduction for plants, biological spectral weighting functions (BSWF) play a key role: calculating the increase of biologically effective solar ultraviolet-B radiation (UV-BBE) due to ozone reduction, assessing current latitudinal gradients of UV-BBE, and comparing solar UV-BBE with that from lamps and filters in plant experiments. Plant UV action spectra (usually determined with monochromatic radiation in the laboratory with exposure periods on the order of hours) are used as BSWF. Yet, many complicating factors cloud the realism of such spectra for plants growing day after day in polychromatic solar radiation in the field. The uses and sensitivity of BSWF in the stratospheric ozone reduction problem are described. The need for scaling BSWF from action spectra determined with monochromatic radiation in laboratory conditions over periods of hours to polychromatic solar radiation in the field is developed. Bottom-up mechanistic and top-down polychromatic action spectrum development are considered as not satisfactory to resolve realistic BSWF. A compromise intermediate approach is described in which laboratory results are tested under polychromatic radiation in growth chambers and, especially, under field conditions. The challenge of the scaling exercise is to resolve disagreements between expected spectral responses at different scales of time and radiation conditions. Iterative experiments with feedback among the different experimental venues is designed to reduce uncertainties about realistic BSWF in the field. Sensitivity analyses are employed to emphasize characteristics of BSWF that are particularly important in assessing the ozone problem. Implications for use of realistic BSWF both for improved research design and for retrospective analysis of past research is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamse, P., Britz, S. J. & Caldwell, C. R. 1994. Amelioration of UV-B damage under high irradiance. II. Role of blue light photoreceptors. Photochem. Photobiol. 60: 110–115.

    Article  CAS  Google Scholar 

  • Ballaré, C. L., Barnes, P. W. & Flint, S. D. 1995. Inhibition of hypocotyl elongation by ultraviolet-B radiation in de-etiolating tomato seedlings. The photoreceptor. Physiol. Plant. 93: 584–592.

    Article  Google Scholar 

  • Ballaré, C. L., Barnes, P. W. & Kendrick, R. E. 1991. Photo-morphogenic effects of UV-B radiation on hypocotyl elongation in wild type and stable-phytochrome-deficient mutant seedlings of cucumber. Physiol. Plant. 83: 652–658.

    Article  Google Scholar 

  • Barnes, P. W., Flint, S. D. & Caldwell, M. M. 1987. Photosynthesis damage and protective pigments in plants from a latitudinal arctic/alpine gradient exposed to supplemental UV-B radiation in the field. Arctic Alpine Res. 19: 21–27.

    Article  Google Scholar 

  • Beggs, C. J., Schneider-Ziebert, U. & Wellmann, E. 1986. UV-B radiation and adaptive mechanisms in plants. pp. 235–250. In: Worrest, R. C & Caldwell, M. M. (eds) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. Springer-Verlag, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Bornman, J. F. 1989. Target sites of UV-B radiation in photosynthesis of higher plants. J. Photochem. Photobiol. B: Biol. 4: 145–158.

    Article  CAS  Google Scholar 

  • Brite, S. J. & Adamse, P. 1994. UV-B-induced increase in specific leaf weight of cucumber as a consequence of increased starch content. Photochem. Photobiol. 60: 116–119.

    Article  Google Scholar 

  • Buchholz, G., Ehmann, B. & Wellmann, E. 1995. Ultraviolet light inhibition of phytochrome-induced flavonoid biosynthesis and DNA photolyase formation in mustard cotyledons (Sinapis alba L.). Plant Physiol. 108: 227–234.

    PubMed  CAS  Google Scholar 

  • Caldwell, M. M. 1971. Solar ultraviolet radiation and the growth and development of higher plants. pp. 131–177. In: Giese, A. C. (ed) Photophysiology. Volume 6. Academic Press, New York.

    Google Scholar 

  • Caldwell, M. M. 1981. Plant response to solar ultraviolet radiation. pp. 169–197. In: Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H. (eds) Encyclopedia of plant physiology, Vol. 12A. Physiological plant ecology I. Responses to the physical environment. Springer-Verlag, Berlin.

    Google Scholar 

  • Caldwell, M. M. & Flint, S. D. 1994a. Solar ultraviolet radiation and ozone layer change: Implications for crop plants. pp. 487–507. In: Boote, K., Bennett, J. M., Sinclair, T. R. & Paulsen, G. M. (eds), Physiology and determination of crop yield. ASA-CSSA-SSSA, Madison, WI.

    Google Scholar 

  • Caldwell, M. M. & Flint, S. D. 1994b. Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Climate Change 28: 375–394.

    Article  CAS  Google Scholar 

  • Caldwell, M. M. & Flint, S. D. 1995. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation. pp. 113–124. In: Tibbitts, T.W. (ed) Proceedings international lighting in controlled environments workshop. National Aeronautics and Space Administration, Ames Research Station, Moffett Field, CA.

    Google Scholar 

  • Caldwell, M. M., Robberecht, R., Nowak, R. S. & Billings, W. D. 1982. Differential photosynthetic inhibition by ultraviolet radiation in species from the arctic-alpine life zone. Arctic Alpine Res. 14: 195–202.

    Article  Google Scholar 

  • Caldwell, M. M., Camp, L. B., Warner, C.W. & Flint, S. D. 1986. Action spectra and their key role in assessing biological consequences of solar UV-B radiation change. pp. 87–111. In: Worrest, R. C. & Caldwell, M. M. (eds) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Caldwell, M. M., Teramura, A. H. & Tevini, M. 1989. The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol. Evol. 4: 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, M. M., Flint S. D. & Searles, P. S. 1994. Spectral balance and UV-B sensitivity of soybean: a field experiment. Plant Cell Environ. 17: 267–276.

    Article  Google Scholar 

  • Cen, Y. P. & Björn, L. O. 1994. Action spectra for enhancement of ultraweak luminescence by UV radiation (270–340 nm) in leaves of Brassica napus. J. Photochem. Photobiol. B: Biol. 22: 125–129.

    Article  Google Scholar 

  • Cen, Y. P. & Bornman, J. F. 1990. The response of bean plants to UV-B radiation under different irradiances of background visible light J. Exp. Bot. 41: 1489–1495.

    Article  Google Scholar 

  • Coblentz, W. W. 1932. The Copenhagen meeting of the Second International Congress on Light. Science 76: 412–415.

    Article  PubMed  CAS  Google Scholar 

  • Coohill, T. P. 1989. Ultraviolet action spectra (280 to 380 nm) and solar effectiveness spectra for higher plants. Photochem. Photobiol. 50: 451–457.

    Article  CAS  Google Scholar 

  • Coohill, T. P. 1991. Action spectra again? Photochem. Photobiol. 54: 859–870.

    Article  PubMed  CAS  Google Scholar 

  • Coohill, T. P. 1992. Action speetra revisited. J. Photochem. Photobiol. B: Biol. 13: 95–98.

    Article  CAS  Google Scholar 

  • Deckmyn, G., Martens, C. & Impens, I. 1994. The importance of the ratio UV-B/photosynthetic active radiation (par) during leaf development as determining factor of plant sensitivity to increased UV-B irradiance: effects on growth, gas exchange and pigmentation of bean plants (Phaseolus vulgaris cv. Label). Plant Cell Environ. 17: 295–301.

    Article  Google Scholar 

  • Ehleringer, J. R. & Field, C. B. (eds). 1993. Scaling physiological processes: leaf to globe. Academic Press, San Diego.

    Google Scholar 

  • Ensminger, P. A. & Schäfer, E. 1992. Blue and ultraviolet-B light photoreceptors in parsley cells. Photochem. Photobiol. 55: 437–447.

    Article  CAS  Google Scholar 

  • Fernbach, E. & Mohr, H. 1992. Photoreactivation of the UV light effects on growth of scots pine (Pinus sylvestris L.) seedlings. Trees 6: 232–235.

    Article  Google Scholar 

  • Flint, S. D. & Caldwell, M. M. 1996. Scaling plant ultraviolet spectral responses from laboratory action spectra to field spectral weighting factors. J. Plant Physiol. 148: 107–114.

    Article  CAS  Google Scholar 

  • Gaba, V. & Black, M. 1987. Photoreceptor interaction in plant photomorphogenesis: the limits of experimental techniques and their interpretations. Photochem. Photobiol. 45: 151–156.

    Article  CAS  Google Scholar 

  • Jagger, J. 1981. Near-UV radiation effects on microorganisms. Photochem. Photobiol. 34: 761–768.

    PubMed  CAS  Google Scholar 

  • Jagger, J., Stafford, R. S. & Snow, J. M. 1969. Thymine-dimer and action-spectrum evidence for indirect photoreactivation in Escherichia coli. Photochem. Photobiol. 10: 383–395.

    Article  CAS  Google Scholar 

  • Kramer, G. F., Krizek, D. T. & Mirecki, R. M. 1992. Influence of photosynthetically active radiation and spectral quality on UV-B-induced polyamine accumulation in soybean. Phytochemistry 31: 1119–1125.

    Article  CAS  Google Scholar 

  • Krizek, D. T., Kramer, G. F., Upadhyaya, A. & Mirecki, R. M. 1993. UV-B response of cucumber seedlings grown under metal halide and high pressure sodium deluxe lamps. Physiol. Plant. 88: 350–358.

    Article  CAS  Google Scholar 

  • Krizek, D. T., Mirecki, R. M. & Kramer, G. F. 1994. Growth analysis of UV-B-irradiated cucumber seedlings as influenced by photosynthetic photon flux source and cultivar. Physiol. Plant. 90: 593–599.

    Article  CAS  Google Scholar 

  • Kumagai, T. & Sato, T. 1992. Inhibitory effects of increase in near-UV radiation on the growth of Japanese rice cultivars (Oryza sativa L.) in a phytotron and recovery by exposure to visible radiation. Jpn. J. Breeding 42: 545–552.

    CAS  Google Scholar 

  • Langer, B. & Wellmann, E. 1990. Phytochrome induction of photore-activating enzyme in Phaseolus vulgaris L. seedlings. Photochem. Photobiol. 52: 861–863.

    Article  CAS  Google Scholar 

  • Menezes, S. & Tyrrell, R. M. 1982. Damage by solar radiation at defined wavelengths: involvement of inducible repair systems. Photochem. Photobiol. 36: 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Middleton, E. M. & Teramura, A. H. 1993. The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiol. 103: 741–752.

    PubMed  CAS  Google Scholar 

  • Middleton, E. M. & Teramura, A. H. 1994. Understanding photosynthesis, pigment and growth responses induced by UV-B and UV-A irradiances. Photochem. Photobiol. 60: 38–45.

    Article  CAS  Google Scholar 

  • Mirecki, R. M. & Teramura, A. H. 1984. Effects of ultraviolet-B irradiance on soybean. V. the dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol. 74: 475–480.

    Article  PubMed  CAS  Google Scholar 

  • Mohr, H. 1986. Coaction between pigment systems. pp. 547–564. In: Kendrick, R. E. & Kronenberg, G. H. M. (eds) Photomorpho-genesis in plants. Martinus Nijhoff/Dr. W. Junk, Dordrecht

    Google Scholar 

  • Panagopoulos, I., Bornman, J. F. & Björn, L. O. 1990. Effects of ultraviolet radiation and visible light on growth, fluorescence induction, ultraweak luminescence and peroxidase activity in sugar beet plants. J. Photochem. Photobiol. B: Biol. 8: 73–87.

    Article  CAS  Google Scholar 

  • Pang, Q. & Hays, J. B. 1991. UV-B-inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol. 95: 536–543.

    Article  PubMed  CAS  Google Scholar 

  • Quaite, F. E., Sutherland, B. M. & Sutherland, J. C. 1992. Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature 358: 576–578.

    Article  CAS  Google Scholar 

  • Robberecht, R., Caldwell, M. M. & Billings, W. D. 1980. Leaf ultraviolet optical properties along a latitudinal gradient in the arctic-alpine life zone. Ecology 61: 612–619.

    Article  Google Scholar 

  • Rundel, R. D. 1983. Action spectra and estimation of biologically effective UV radiation. Physiol. Plant. 58: 360–366.

    Article  Google Scholar 

  • Searles, P. S., Caldwell, M. M. & Winter, K. 1995. The response of five tropical dicotyledon species to solar ultraviolet-B radiation. Am. J. Bot. 82: 445–453.

    Article  Google Scholar 

  • Setlow, R. B. 1974. The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. Proc. Nat Acad. Sci. USA 71: 3363–3366.

    Article  PubMed  CAS  Google Scholar 

  • Steinmüller, D. 1986. Zur Wirkung ultravioletter Strahlung (UV-B) auf die Struktur von Blattoberflächen und zu Wirkungsmechanismen bei der Akkumulation und Biosynthese der Kutikularlipide einiger Nutzpflanzen. PhD Dissertation, University of Karlsruhe.

    Google Scholar 

  • Takayanagi, S., Trunk, J. G., Sutherland, J. C. & Sutherland, B. M. 1994. Alfalfa seedlings grown outdoors are more resistant to UV-induced DNA damage than plants grown in a UV-frcc environmental chamber. Photochem. Photobiol. 60: 363–367.

    Article  CAS  Google Scholar 

  • Tevini, M. & Teramura, A. H. 1989. UV-B effects on terrestrial plants. Photochem. Photobiol. 50: 479–487.

    Article  CAS  Google Scholar 

  • Warner, C. W. & Caldwell, M. M. 1983. Influence of photon flux density in the 400–700 nm waveband on inhibition of photosynthesis by UV-B (280–320 nm) irradiation in soybean leaves: separation of indirect and immediate effects. Photochem. Photobiol. 38: 341–346.

    Article  CAS  Google Scholar 

  • Webb, R. B. 1977. Lethal and mutagenic effects of near-ultraviolet radiation. Photochem. Photobiol. Rev. 2: 169–261.

    Article  CAS  Google Scholar 

  • Wilson, M. I. & Greenberg, B. M. 1993. Specificity and photo-morphogenic nature of ultraviolet-B-induced cotyledon curling in Brassica napus L. Plant Physiol. 102: 671–677.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Caldwell, M.M., Flint, S.D. (1997). Uses of biological spectral weighting functions and the need of scaling for the ozone reduction problem. In: Rozema, J., Gieskes, W.W.C., Van De Geijn, S.C., Nolan, C., De Boois, H. (eds) UV-B and Biosphere. Advances in vegetation science, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5718-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5718-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6411-8

  • Online ISBN: 978-94-011-5718-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics