Skip to main content

Formation and Evolution of Interstellar Icy Grain Mantles

  • Chapter
The Cosmic Dust Connection

Part of the book series: NATO ASI Series ((ASIC,volume 487))

Abstract

We review the evolution of the icy mantles that condense on interstellar grains in dense clouds. Infrared absorption features in the spectra of obscured objects show that H2O is the most abundant constituent of interstellar ices, with important contributions by CO, CH3OH and possibly CO2 and H2CO. Models furthermore predict that O2, N2, NH3 and CH4 could make significant contributions. Fitting the observed infrared band shapes with laboratory produced ices of various composition, it was derived that the various components are not homogeneously mixed but rather that various phases are present of distinct chemical make-up. One phase is dominated by water ice, while another is dominated by apolar species, i.e., CO and possibly O2, N2 and CO2. Furthermore, a third phase rich in CH3OH as well as H2O ice is probably present. On the basis of models of dense cloud chemistry, it is discussed how each of these phases could correspond to condensation in cloud regions characterized by distinct densities and extinction. Considering this as well as a simple-minded view on the dynamic evolution of clouds, it is argued that the icy mantles could have an onion-shell like structure, resulting from the condensation of layers of different types of ices in the physically distinct regions in which the grain resides over the course of time. It is discussed how processing by UV and cosmic rays could modify the ices, giving rise to a number of relatively complex and often reactive species. We review current evidence for the modification of the gas phase chemistry by molecules which were formed in the grain mantles and subsequently ejected. Finally, it is considered how future observations by space-based observatories could enhance our knowledge of the composition of interstellar ices and how this could lead to a better understanding of dense cloud chemistry in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • L.J. Allamandola, S.A. Sandford and G.J. Valero. Photochemical and thermal evolution of interstellar/precometary ice analogs. Icarus 76 (1998) 225–252.

    Article  ADS  Google Scholar 

  • L.J. Allamandola, A.G.G.M. Tielens and J.R. Barker. Interstellar polycyclic aromatic hydrocarbons: The infrared emission bands, the excitation/emission mechanism and the astrophysical implications. Astrophys. J. Suppl. Ser. 71 (1989) 733–775.

    Article  ADS  Google Scholar 

  • L.J. Allamandola, S.A. Sandford, A.G.G.M. Tielens and T.M. Herbst. Infrared spectroscopy of dense clouds in the C-H stretching region: Methanol and “diamonds”. Astrophys. J. 399 (1992) 134–146.

    Article  ADS  Google Scholar 

  • L.J. Allamandola, S.A. Sandford, A.G.G.M. Tielens and T.M. Herbst. Diamonds in dense molecular clouds: A challenge to the standard interstellar medium paradigm. Science 260 (1993) 64–66.

    Article  ADS  Google Scholar 

  • J.A. Baldwin, G.J. Ferland, P.G. Martin, M.R. Corbin, S.A. Cota, B.M. Peterson and A. Slettebak. Physical conditions in the Orion nebula and an assessment of the helium abundance. Astrophys. J. 374 (1991) 580–609.

    Article  ADS  Google Scholar 

  • E.A. Bergin, W.D. Langer and P.F. Goldsmith. Gas phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption. Astrophys. J., in press.

    Google Scholar 

  • G.A. Blake, E.C. Sutton, C.R. Masson and T.G. Phillips. Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation. Astrophys. J. 315 (1987) 621–645.

    Article  ADS  Google Scholar 

  • L. Blitz and F.H. Shu. The origin and lifetime of giant molecular cloud complexes. Astrophys. J. 238 (1980) 148–157.

    Article  ADS  Google Scholar 

  • R.B. Bohn, S.A. Sandford, L.J. Allamandola and D.P. Cruikshank. Infrared spectroscopy of Triton and Pluto ice analogs: The case for saturated hydrocarbons. Icarus 111 (1994) 151–173.

    Article  ADS  Google Scholar 

  • W. Boland and T. de Jong. Carbon depletion in turbulent molecular cloud cores, Astrophys. J. 261 (1982) 110–114.

    Article  ADS  Google Scholar 

  • R. Breukers. Thermal and chemical processes in the evolution of interstellar dust and gas. Ph.D. thesis, University of Leiden, the Netherlands (1991).

    Google Scholar 

  • R. Briggs, G. Ertem, J.P. Ferris, J.M. Greenberg, P. J. McCain, C.X. Mendoza-Gomez and W. Schutte. Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Origins of Life and Evolution of the Biosphere (1992) 287–307.

    Google Scholar 

  • P.D. Brown. The grain-surface formation of complex molecules. Mon. Not. Roy. Astron. Soc. 243 (1990) 65–71.

    ADS  Google Scholar 

  • P.D. Brown and S.B. Charnley. Chemical models of interstellar gas-grain processes I. Modelling and the effect of accretion on gas abundances and mantle composition in dense clouds. Mon. Not. Roy. Astron. Soc. 244 (1990) 432–443.

    ADS  Google Scholar 

  • V. Buch and J.P. Devlin. Interpretation of the 4141 inverse centimeters (2.415 microns) interstellar infrared absorption feature. Astrophys. J. 431 (1994) L135–L138.

    Article  ADS  Google Scholar 

  • C. Cecchi-Pestellini, S. Aiello and B. Barsella. Mon. Not. Roy. Astron. Soc. (1995a) in press.

    Google Scholar 

  • C. Cecchi-Pestellini, S. Aiello and B. Barsella. Astrophys. J. Suppl. Ser. (1995b) in press.

    Google Scholar 

  • S.B. Charnley, A.G.G.M. Tielens and T.J. Millar. On the molecular complexity of the hot core in Orion A: Grain surface chemistry as: “The last refuge of the scoundrel”. Astrophys. J. 399 (1992) L71–L74.

    Article  ADS  Google Scholar 

  • J.E. Chiar, A.J. Adamson, T.H. Kerr and D.C.B. Whittet. Solid carbon monoxide in the Serpens dark cloud. Astrophys. J. 426 (1994) 240–248.

    Article  ADS  Google Scholar 

  • L.B. d’Hendecourt, L.J. Allamandola, F. Baas and J.M. Greenberg. Interstellar grain explosions: Molecule cycling between gas and dust. Astron. Astrophys. 109 (1982) L12–L14.

    ADS  Google Scholar 

  • L.B. d’Hendecourt, L.J. Allamandola and J.M. Greenberg. Time dependent chemistry in dense molecular clouds: I. Grain surface reactions, gas/grain interactions and infrared spectroscopy. Astron. Astrophys. 152 (1985) 130–150.

    ADS  Google Scholar 

  • L.B. d’Hendecourt, L.J. Allamandola, R.J.A. Grim and J.M. Greenberg. Time dependent chemistry indense molecular clouds: II. Ultraviolet photoprocessing and infrared spectroscopy of grain mantles. Astron. Astrophys. 158 (1986) 119–134.

    ADS  Google Scholar 

  • L.B. d’Hendecourt and L.J. Allamandola. Time dependent chemistry in dense molecular clouds. III. Infrared band cross-sections of molecules in solid state at 10 K. Astron. Astrophys. Suppl. Ser. 64 (1986) 453–467.

    ADS  Google Scholar 

  • L.B. d’Hendecourt and M. Jourdain de Muizon. The discovery of interstellar carbon dioxide. Astron. Astrophys. 223 (1989) L5–L8.

    ADS  Google Scholar 

  • R.W. Dissly, M. Allen and V.G. Anicich. H2-rich interstellar grain mantles: An equilibrium description. Astrophys. J. 435 (1994) 685–692.

    Article  ADS  Google Scholar 

  • B.T. Draine and E.E. Salpeter. Destruction mechanisms for interstellar dust. Astrophys. J. 231 (1979) 438–455.

    Article  ADS  Google Scholar 

  • P. Ehrenfreund, F. Robert, L.B. d’Hendecourt, F. Behar. Comparison of interstellar and meteoritic organic matter at 3.4 micron. Astron. Astrophys. 252 (1991) 712–717.

    ADS  Google Scholar 

  • P. Ehrenfreund, R. Breukers, L.B. d’Hendecourt and J.M. Greenberg. On the possibility of detecting solid O2 in interstellar grain mantles. Astron. Astrophys. 260 (1992) 431–436.

    ADS  Google Scholar 

  • P. Ehrenfreund, P.A. Gerakines and W.A. Schutte. In preparation.

    Google Scholar 

  • C. Eiroa and K.W. Hodapp. Ice dust grains in the Serpens molecular cloud. Astron. Astrophys. 210 (1989) 345–350.

    ADS  Google Scholar 

  • B.G. Elmegreen. Formation of interstellar clouds and structure, in Protostars and Planets III, E.H. Levy and J.I. Lunine, Eds. University of Arizona Press, Tucson/London (1993) 97–124.

    Google Scholar 

  • S.R. Federman and M. Allen. Formaldehyde in envelopes of interstellar dark clouds. Astrophys. J. 375 (1991) 157–162.

    Article  ADS  Google Scholar 

  • G. Foti, L. Calcagno, K.L. Sheng and G. Strazzulla. Micrometre-sized polymer layers synthesized by MeV ions impinging on frozen methane. Nature 310 (1984) 126–128.

    Article  ADS  Google Scholar 

  • M.A. Frerking, W.D. Langer and R.W. Wilson. The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. Astrophys. J. 262 (1982) 590–605.

    Article  ADS  Google Scholar 

  • B.P. Flannery, W. Roberge and G.B. Rybicki. The penetration of diffuse ultraviolet radiation into interstellar clouds. Astrophys. J. 236 (1980) 598–608.

    Article  ADS  Google Scholar 

  • T.R. Geballe, F. Baas, J.M. Greenberg and W. Schutte. New infrared absorption features due to solid phase molecules containing sulfur in W33 A. Astron. Astrophys. 146(1985) L6–L8.

    ADS  Google Scholar 

  • T.R. Geballe. Absorption by solid and gaseous CO towards obscured infrared objects. Astron. Astrophys. 162 (1986a) 248–252.

    ADS  Google Scholar 

  • T.R. Geballe. Some recent infrared spectroscopy of interstellar processes. NASA Technical Memorandum 88342 (1986b) 129–130.

    Google Scholar 

  • P.A. Gerakines, W.A. Schutte, J.M. Greenberg and E.F. van Dishoeck. The infrared band strenghts of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures. In press.

    Google Scholar 

  • P.A. Gerakines, P. Ehrenfreund and W.A. Schutte. In preparation.

    Google Scholar 

  • F.C. Gillett and W.J. Forrest. Spectra of the Becklin-Neugebauer point source and the Kleinmann-Low nebula from 2.8-13.5 microns. Astrophys. J. 179 (1973) 483–491.

    Article  ADS  Google Scholar 

  • F.C. Gillett, T.W. Jones, K.M. Merrill and W.A. Stein. Anisotropy of constituents of interstellar grains. Astron. Astrophys. 45 (1975) 77–81.

    ADS  Google Scholar 

  • J.M. Greenberg. Interstellar grain temperatures: Effects of grain materials and radiation fields. Astron. Astrophys. 12 (1971) 240–249.

    ADS  Google Scholar 

  • J.M. Greenberg. Radical formation, chemical processing and explosion of interstellar grains. Astron. Astrophys. 39 (1976) 9–18.

    Google Scholar 

  • J.M. Greenberg. Grain mantle photolysis: A connection between the grain size distribution function and the abundance of complex interstellar molecules, in Star and Star Systems, B.E. Westerlund, Ed., Reidel, Dordrecht (1979) 173–193.

    Google Scholar 

  • J.M. Greenberg, C.X. Mendoza-Gómez, M.S. de Groot and R. Breukers. Laboratory dust studies and gas-grain chemistry, in Dust and Chemistry in Astronomy, T.J. Millar and D.A. Williams, Eds., IOP Publ. Ltd., Bristol (1993) 265–288.

    Google Scholar 

  • R.J.A. Grim and L.B. d’Hendecourt. Time dependent chemistry in dense molecular clouds: IV. Interstellar grain surface reactions inferred from a matrix isolation study. Astron. Astrophys. 167 (1986) 161–165.

    ADS  Google Scholar 

  • R.J.A. Grim and J.M. Greenberg. Ions in grain mantles: The 4.62 micron absorption by OCN- in W33 A. Astrophys. J. 321 (1987) L91–L96.

    Article  ADS  Google Scholar 

  • R. Grim, J.M. Greenberg, W. Schutte and B. Schmitt. Ions in grain mantles: A new explanation for the 6.86 micron absorption in W33 A. Astrophys. J. 341 (1989a) L87–L90.

    Article  ADS  Google Scholar 

  • R.J.A. Grim, J.M. Greenberg, M.S. de Groot, F. Baas, W.A. Schutte and B. Schmitt. Infrared spectroscopy of astrophysical ices: New insights in the photochemistry. Astron. Astrophys. Suppl. Ser. 78 (1989b) 161–186.

    ADS  Google Scholar 

  • R.J.A. Grim, F. Baas, T.R. Geballe, J.M. Greenberg and W. Schutte. Detection of solid methanol toward W33 A. Astron. Astrophys. 243 (1991) 473–477.

    ADS  Google Scholar 

  • W. Hagen, L.J. Allamandola and J.M. Greenberg. Interstellar molecule formation in grain mantles: The laboratory analog experiments, results and implications. Astrophys. Space Sci. 65 (1979) 215–240.

    Article  ADS  Google Scholar 

  • W. Hagen and A.G.G.M. Tielens. Infrared spectrum of H2O matrix isolated in CO at 10 K: Evidence for bifurcated dimers. J. Chem. Phys. 75 (1981) 4198–4207.

    Article  ADS  Google Scholar 

  • W. Hagen. Chemistry and infrared spectroscopy of interstellar grains. Ph.D. thesis, University of Leiden, the Netherlands (1982).

    Google Scholar 

  • T.I. Hasegawa, E. Herbst and C.M. Leung. Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. Astrophys. J. Suppl. Ser. 82 (1992) 167–195.

    Article  ADS  Google Scholar 

  • T.I. Hasegawa and E. Herbst. New gas-grain chemical models of quiescent dense interstellar clouds: the effects of H2 tunnelling reactions and cosmic ray induced desorption. Mon. Not. Roy. Astron. Soc. 261 (1993a) 83–102.

    ADS  Google Scholar 

  • T.I. Hasegawa and E. Herbst. Three-phase chemical models of dense interstellar clouds: gas, dust particle mantles and dust particle surfaces. Mon. Not. Roy. Astron. Soc. 263 (1993b) 589–606.

    ADS  Google Scholar 

  • C. Henkel, R. Mauersberger, T.L. Wilson, L.E. Snyder, K. Menten and J.G.A. Wouterloot. Deuterated water in Orion-KL and NGC 7538. Astron. Astrophys. 182 (1987) 299–304.

    ADS  Google Scholar 

  • E. Herbst, S. Green, P. Thaddeus and W. Klemperer. Indirect observation of unobservable interstellar molecules. Astrophys. J. 215 (1977) 503–510.

    Article  ADS  Google Scholar 

  • E. Herbst and C.M. Leung. Effects of large rate coefficients for ion-polar neutral reactions on chemical models of dense interstellar clouds. Astrophys. J. 310 (1986) 378–382.

    Article  ADS  Google Scholar 

  • A. Hetem Jr. and J.R.D. Lépine. Fractal 3-D simulations of molecular clouds. Astron. Astrophys. 270 (1993) 451–461.

    ADS  Google Scholar 

  • D.M. Hudgins, S.A. Sandford, L.J. Allamandola and A.G.G.M. Tielens. Mid-and far-infrared spectroscopy of ices: Optical constants and integrated absorbances. Astrophys. J. Suppl. Ser. 86 (1993) 713–870.

    Article  ADS  Google Scholar 

  • W.M. Irvine, F.P. Schloerb, A. Hjalmarson and E. Herbst. 1985, The chemical state of dense interstellar clouds: An overview, in Protostars and Planets II, D. Black and M. Matthews, Eds., The University of Arizona Press, Tucson/ London (1985) 579–610.

    Google Scholar 

  • W.M. Irvine, P.F. Goldsmith and A. Hjalmarson. Chemical abundances in molecular clouds, in Interstellar Processes, D.J. Hollenbach and H.A. Thronson, Eds., Dordrecht, Reidel (1987) 561–609.

    Google Scholar 

  • E.B. Jenkins. Element abundances in the interstellar atomic material, in Interstellar Processes, D.J. Hollenbach and H.A. Thronson, Eds., Dordrecht, Reidel, (1987) 533–559.

    Google Scholar 

  • P. Jenniskens, G.A. Baratta, A. Kouchi, M.S. de Groot, J.M. Greenberg and G. Strazzulla. Carbon dust formation on interstellar grains. Astron. Astrophys. 273 (1993) 583–600.

    ADS  Google Scholar 

  • P. Jenniskens and D.F. Blake. Structural transitions in amorphous water ice and astrophysical implications. Science 265 (1994) 753–756.

    Article  ADS  Google Scholar 

  • M. Jura. Interstellar clouds containing optically thin H2. Astrophys. J. 197 (1975) 575–580.

    Article  ADS  Google Scholar 

  • M. Jura. Origin of large interstellar grains towards Ophiuchi. Astrophys. J. 235 (1980) 63–65.

    Article  ADS  Google Scholar 

  • T.H. Kerr, A.J. Adamson and D.C.B. Whittet. Infrared spectroscopy of solid CO: the Ophiuchi molecular cloud. Mon. Not. Roy. Astron. Soc. 262 (1993) 1047–1056.

    ADS  Google Scholar 

  • S.-H. Kim, P.G. Martin and P.D. Hendry. The size distribution of interstellar dust particles as determined from extinction. Astrophys. J. 422 (1994) 164–175.

    Article  ADS  Google Scholar 

  • J.H. Lacy, F. Baas, L.J. Allamandola, S.E. Persson, P.J. McGregor, C.J. Lonsdale, T.R. Geballe and C.E.P. van de Bult. 4.6 micron absorption features due to solid phase CO and cyano group molecules toward compact infrared sources. Astrophys. J. 276 (1984) 533–543.

    Article  ADS  Google Scholar 

  • J.H. Lacy, J.S. Carr, N. Evans, F. Baas, J.M. Achtermann and F. Arens. Discovery of interstellar methane: Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds. Astrophys. J. 376 (1991) 556–560.

    Article  ADS  Google Scholar 

  • L.J. Lanzerotti, W.L. Brown and K.J. Marcantonio. Experimental study of erosion of methane ice by energetic ions and some considerations for astrophysics. Astrophys. J. 313 (1987) 910–919.

    Article  ADS  Google Scholar 

  • R.J. Laureys, F.O. Clark and T. Prusti. IRAS detection of very cold dust in the Lynds 134 cloud complex, Astrophys. J. 372 (1991) 185–193.

    Article  ADS  Google Scholar 

  • A. Léger. Does CO condense on dust in molecular clouds? Astron. Astrophys. 123 (1983) 271–278.

    ADS  Google Scholar 

  • A. Léger, M. Jura and A. Omont. Desorption from interstellar grains. Astron. Astrophys. 144 (1985) 147–160.

    ADS  Google Scholar 

  • S.H. Lubow and J.E. Pringle. Magnetic reconnection and star formation in molecular clouds. Mon. Not. Roy. Astron. Soc., in press.

    Google Scholar 

  • T. Maihara, K. Mizutani and H. Suto. Infrared spectroscopic study of NGC 2024. Astrophys. J. 354 (1990) 549–555.

    Article  ADS  Google Scholar 

  • J.S. Mathis, W. Rumpl and K.H. Nordsieck. The size distribution of interstellar grains. Astrophys. J. 217 (1977) 425–433.

    Article  ADS  Google Scholar 

  • J.S. Mathis, P.G. Mezger and N. Panagia N. Interstellar radiation field and dust temperatures in the diffuse matter and in giant molecular clouds. Astron. Astrophys. 128 (1983) 212–229.

    ADS  Google Scholar 

  • K.M. Menten, C.M. Walmsley, C. Henkel and T.L. Wilson. The centimeter transitions of E-type methanol. Astron. Astrophys. 157 (1986) 318–328.

    ADS  Google Scholar 

  • K.M. Menten, C.M. Walmsley, C. Henkel and T.L. Wilson. Methanol in the Orion region. I. Millimeter wave observations. Astron. Astrophys. 198 (1988) 253–266.

    ADS  Google Scholar 

  • Y.C. Minn, W.M. Irvine and L.M. Ziurys. Observations of interstellar HOCO+: Abundance enhancements towards the galactic center. Astrophys. J. 334 (1988) 175–181.

    Article  ADS  Google Scholar 

  • M.H. Moore and B. Donn. The infrared spectrun of a laboratory synthesized residue: Implications for the 3.4 micron interstellar absorption feature. Astrophys. J. 257 (1982) L47–L50.

    Article  ADS  Google Scholar 

  • M.H. Moore and R.L. Hudson. Far-infrared spectra of cosmic-type and mixed ices. Astron. Astrophys. Suppl. Ser. 103 (1994) 45–56.

    ADS  Google Scholar 

  • C. Norman and J. Silk. Clumpy molecular clouds: A dynamic model self-consistently regulated by T-Tauri star formation. Astrophys. J. 238 (1980) 158–174.

    Article  ADS  Google Scholar 

  • H. Okabe. Photochemistry of Small Molecules. Wiley, New York (1978).

    Google Scholar 

  • H. Olofsson. Deuterated water in Orion-KL and W51M. Astron. Astrophys. 134 (1984) 36–44.

    ADS  Google Scholar 

  • L. Pagani, W.D. Langer and A. Castets. First tentative detection of the molecular oxygen isotopomer 16O18O in interstellar clouds. Astron. Astrophys. 274 (1993) L13–L16.

    ADS  Google Scholar 

  • M.E. Palumbo and G. Strazzulla. The 2140 cm-1 band of frozen CO in ion-irradiated and unirradiated mixtures with methanol and water. Astron. Astrophys. 259 (1992) L12–L14.

    ADS  Google Scholar 

  • M.E. Palumbo and G. Strazzulla. 1993, The 2140 cm-1 band of frozen CO: laboratory experiments and astrophysical applications. Astron. Astrophys. 269 (1993) 568–580.

    ADS  Google Scholar 

  • Y.J. Pendleton, A.G.G.M. Tielens and M.W. Werner. Studies of dust grain properties in infrared reflection nebulae. Astrophys. J. 349 (1990) 107–119.

    Article  ADS  Google Scholar 

  • V. Pirronello, W.L. Brown, L.J. Lanzerotti, K. Marcantonio and E.J. Simmons. Formaldehyde formation in a CO2 ice mixture under irradiation by fast ions. Astrophys. J. 262 (1982) 636–640.

    Article  ADS  Google Scholar 

  • R.L. Plambeck and M.C.H. Wright. Aperture synthesis maps of HDO emission in Orion-KL. Astrophys. J. 317 (1987) L101–L105.

    Article  ADS  Google Scholar 

  • S.S. Prasad and S.P. Tarafdar. UV radiation field inside dense clouds: Its possible existence and chemical implications. Astrophys. J. 267 (1983) 603–609.

    Article  ADS  Google Scholar 

  • S.S. Prasad and W.T. Huntress Jr. A model for the gas phase chemistry in interstellar clouds. I. The basic model, library of chemical reactions, and chemistry among C, N and O compounds. Astrophys. J. Suppl. Ser. 43 (1980) 1–35.

    Article  ADS  Google Scholar 

  • S.S. Prasad, S.P. Tarafdar, K.R. Villere and W.T. Huntress Jr. Chemical evolution of molecular clouds, in Interstellar Processes, D.J. Hollenbach and H.A. Thronson, Eds., Dordrecht, Reidel (1987) 631–666.

    Google Scholar 

  • F. Salama, L.J. Allamandola, F.C. Witteborn, D.P. Cruikshank, S.A. Sandford and J.D. Bregman. The 2.5–5.0 micron spectra of Io: Evidence for H2S and H2O frozen in SO2. Icarus 83 (1990) 66–82.

    Article  ADS  Google Scholar 

  • S.A. Sandford and R.M. Walker. Laboratory infrared transmission spectra of individual interplanetary dust particles from 2.5–25 microns. Astrophys. J. 291 (1985) 838–851.

    Article  ADS  Google Scholar 

  • S.A. Sandford and L.J. Allamandola. The condensation and vaporization behavior of H2O:CO ices and the implications for interstellar grains and cometary activity. Icarus 76 (1988) 201–224.

    Article  ADS  Google Scholar 

  • S.A. Sandford, L.J. Allamandola, A.G.G.M. Tielens and L.J. Valero. Laboratory studies of the infrared spectral properties of CO in astrophysical ices. Astrophys. J. 329 (1988) 498–510.

    Article  ADS  Google Scholar 

  • S.A. Sandford and L.J. Allamandola. The physical and infrared spectral properties of CO2 in astrophysical ice analogues. Astrophys. J. 355 (1990) 357–372.

    Article  ADS  Google Scholar 

  • S.A. Sandford, L.J. Allamandola, A.G.G.M. Tielens, K. Sellgren and M. Tapia. The interstellar C-H stretching band near 3.4 microns: Constraints on the composition of organic material in the diffuse interstellar medium. Astrophys. J. 371 (1991) 607–620.

    Article  ADS  Google Scholar 

  • S.A. Sandford and L.J. Allamandola. H2 in interstellar and extragalactic ices: Infrared characteristics, ultraviolet production and implications. Astrophys. J. 409 (1993a) L65–L68.

    Article  ADS  Google Scholar 

  • S.A. Sandford and L.J. Allamandola. Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry. Astrophys. J. 417 (1993b) 815–825.

    Article  ADS  Google Scholar 

  • S.A. Sandford, L.J. Allamandola and T.R. Geballe. Spectroscopic detection of molecular hydrogen frozen in interstellar ices. Science 262 (1993) 400–402.

    Article  ADS  Google Scholar 

  • B. Schmitt, R.J.A. Grim and J.M. Greenberg. Molecular diffusion in ices: Implications for the composition of interstellar grain mantles and comet nuclei, in Experiments on cosmic dust analogues, E. Bussoletti, C. Fusco and G. Longo, Eds., Kluwer, Dordrecht (1989) 259–269.

    Google Scholar 

  • B. Schmitt. Physical and chemical processes in icy grain mantles, in AIP Conf. Proc. 312: Molecules and grains in space, I. Nenner, Ed., AIP Press, New York (1994) 735–757.

    Google Scholar 

  • W.A. Schutte. The evolution of interstellar organic grain mantles. Ph.D. thesis, University of Leiden, the Netherlands (1988).

    Google Scholar 

  • W.A. Schutte and J.M. Greenberg. Explosive desorption of icy grain mantles in dense clouds. Astron. Astrophys. 244 (1991) 190–204.

    ADS  Google Scholar 

  • W.A. Schutte, A.G.G.M. Tielens and S.A. Sandford. 10 micron spectra of protostars and the solid methanol abundance. Astrophys. J. 382 (1991) 523–529.

    Article  ADS  Google Scholar 

  • W.A. Schutte, L.J. Allamandola and S.A. Sandford. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions. Icarus 104 (1993a) 118–137.

    Article  ADS  Google Scholar 

  • W.A. Schutte, L.J. Allamandola and S.A. Sandford. Formaldehyde and organic molecule production in astrophysical ices at cryogenic temperatures. Science 259 (1993b) 1143–1145.

    Article  ADS  Google Scholar 

  • W.A.Schutte, P.A. Gerakines, E.F. van Dishoeck, J.M. Greenberg and T.R. Geballe. In preparation.

    Google Scholar 

  • K. Sellgren, R.G. Smith and T.Y. Brooke. The 3.2-3.6 micron spectra of Monoceros R2/IRS-3 and Elias 16. Astrophys. J. 433 (1994) 179–186.

    Article  ADS  Google Scholar 

  • O.M. Shalabiea and J.M. Greenberg. Two key processes in dust/gas chemical modelling: photo-processing of grain mantles and explosive desorption. Astron. Astrophys. 290 (1994) 266–278.

    ADS  Google Scholar 

  • C.J. Skinner, A.G.G.M. Tielens, M.J. Barlow and K. Justtanont. Methanol ice in the protostar GL 2136. Astrophys. J. 399 (1992) L79–L82.

    Article  ADS  Google Scholar 

  • M.A.H. Smith, C.P. Rinsland, B. Fridovich and K.N. Rao. In Molecular Spectroscopy: Modern research, Vol. III, K.N. Rao, Ed., Academic Press (1985) 111.

    Google Scholar 

  • R.G. Smith, K. Sellgren and A.T. Tokunaga. Absorption features in the 3 micron spectra of protostars. Astrophys. J. 344 (1989) 413–426.

    Article  ADS  Google Scholar 

  • B.T. Soifer, R.C. Puetter, R.W. Russell, S.P. Willner, P.M. Harvey and F.C. Gillett. The 4–8 micron spectra of the infrared source W33 A. Astrophys. J. 232 (1979) L53–L57.

    Article  ADS  Google Scholar 

  • L. Spitzer. Physical processes in the interstellar medium. Wiley, New York (1978).

    Google Scholar 

  • G. Strazzulla, L. Calcagno and G. Foti. Build up of carbonaceous material by fast protons in Pluto and Triton. Astron. Astrophys. 140 (1984) 441–444.

    ADS  Google Scholar 

  • G. Strazzulla and G.A. Baratta. Carbonaceous Material by ion irradiation in space. Astron. Astrophys. 266 (1992) 434–438.

    ADS  Google Scholar 

  • M. Tanaka, S. Sato and T. Nagata. Three micron ice band features in Ophiuchi sources. Astrophys. J. 352 (1990) 724–730.

    Article  ADS  Google Scholar 

  • M. Tanaka, N. Nagata, S. Sato and T. Yamamoto. The nature of CO and H2O ices in the Corona Australis molecular cloud. Astrophys. J. 430 (1994) 779–785.

    Article  ADS  Google Scholar 

  • A.G.G.M. Tielens and W. Hagen. Model calculations of the molecular composition of interstellar grain mantles. Astron. Astrophys. 114 (1982) 245–260.

    ADS  Google Scholar 

  • A.G.G.M. Tielens. Surface chemistry of deuterated molecules. Astron. Astrophys. 119 (1983) 177–184.

    ADS  Google Scholar 

  • A.G.G.M. Tielens and L.J. Allamandola. Composition, structure and chemistry of interstellar dust, in Interstellar Processes, D.J. Hollenbach and H.A. Thronson, Eds., Reidel, Dordrecht (1987a) 397–469.

    Google Scholar 

  • A.G.G.M. Tielens and L.J. Allamandola. Evolution of interstellar dust, in Physical processes in interstellar clouds, G.E. Morfill and M. Scholer, Eds. (1987b) 333–376.

    Google Scholar 

  • A.G.G.M. Tielens. Dust in dense clouds, in IAU Symp. 135: Interstellar Dust, L.J. Allamandola and A.G.G.M. Tielens, Eds., Kluwer, Dordrecht (1989) 239–262.

    Google Scholar 

  • A.G.G.M. Tielens, A.T. Tokunaga, T.R. Geballe and F. Baas. Interstellar solid CO: Polar and nonpolar interstellar ices. Astrophys. J. 381 (1991) 181–199.

    Article  ADS  Google Scholar 

  • B.E. Turner. Detection of doubly deuterated interstellar formaldehyde D2CO): An indicator of active grain surface chemistry. Astrophys. J. 362 (1990) L29–L33.

    Article  ADS  Google Scholar 

  • C.E.P.M. van de Bult, J.M. Greenberg and D.C.B. Whittet. Ice in the Taurus molecular cloud: modelling of the 3 micron profile. Mon. Not. Roy. Astron. Soc. 214 (1985) 289–305.

    ADS  Google Scholar 

  • H.C. van de Hulst. De vorming van vaste deeltjes in het interstellaire gas. 6. De aangroeiing van de rookdeeltjes. Ned. Tijdschr. v. Natuurkunde 10 (1943) 251–255.

    Google Scholar 

  • H.C. van de Hulst. Recherche Astron. Observatoire Utrecht 11 (1949) part 2.

    Google Scholar 

  • E.F. van Dishoeck and J.H. Black. Photodissociation and photoionization processes, in Rate Coefficients in Astrochemistry, T.J. Millar and D.A. Williams, Eds., Kluwer, Dordrecht (1988) 49–72.

    Chapter  Google Scholar 

  • E.F. van Dishoeck, G.A. Blake, B.T. Draine and J.I. Lunine. The chemical evolution of protostellar and protoplanetary matter, in Protostars and Planets III, E.H. Levy and J.I. Lunine, Eds., The University of Arizona Press, Tucson/London (1993) 163–241.

    Google Scholar 

  • M.R.G. Vogelaar and B.P. Wakker. Measuring the fractal structure of interstellar clouds. Astron. Astrophys. 291 (1994) 557–568.

    ADS  Google Scholar 

  • C.M. Walmsley, W. Hermsen, C. Henkel, R. Mauersberger and T.L. Wilson. Deuterated ammonia in the Orion hot core. Astron. Astrophys. 172 (1987) 311–315.

    ADS  Google Scholar 

  • W.D. Watson and E.E. Salpeter. Molecule formation on interstellar grains. Astrophys. J. 174 (1972) 321–340.

    Article  ADS  Google Scholar 

  • M.S. Westley, R.A. Baragiola, R.E. Johnson and G.A. Baratta. Ultraviolet photodesorption from water ice. Planet. Space Sci., in press.

    Google Scholar 

  • A.S. Wexler. Integrated intensities of absorption bands in infrared spectroscopy. Appl. Spectrosc. Rev. 1 (1967) 29–98.

    Article  ADS  Google Scholar 

  • D.C.B. Whittet, M.F. Bode, A.J. Longmore, D.W.T. Baines and A. Evans. Interstellar ice grains in the Taurus molecular cloud. Nature 303 (1983) 218–221.

    Article  ADS  Google Scholar 

  • D.C.B. Whittet, A.J. Longmore and A.D. McFadzean. Solid CO in the Taurus dark clouds. Mon. Not. Roy. Astron. Soc. 216 (1985) 45–50.

    ADS  Google Scholar 

  • D.C.B. Whittet, M.F. Bode, A.J. Longmore, A.J. Adamson, A.D. McFadzean, D.K. Aitken and P.F. Roche. Infrared spectroscopy of dust in the Taurus dark clouds: ice and silicates. Mon. Not. Roy. Astron. Soc. 233 (1988) 321–336.

    ADS  Google Scholar 

  • D.C.B. Whittet, A.J. Adamson, W.W. Duley, T.R. Geballe and A.D. McFadzean. Infrared spectroscopy of dust in the Taurus dark cloud: Solid carbon monoxide. Mon. Not. Roy. Astron. Soc. 241 (1989) 707–720.

    ADS  Google Scholar 

  • D.C.B. Whittet and H.J. Walker. On the occurrence of carbon dioxide in interstellar grain mantles, Mon. Not. Roy. Astron. Soc. 252 (1991) 63–67.

    ADS  Google Scholar 

  • D.C.B. Whittet. Observations of molecular ices, in Dust and Chemistry in Astronomy, T.J. Millar and D.A. Williams, Eds., IOP Publ. Ltd., Bristol (1993) 1–26.

    Google Scholar 

  • D.A. Williams and T.W. Hartquist. On C° and CO in dense interstellar clouds: Evidence that cloud material is frequently shocked. Mon. Not. Roy. Astron. Soc. 210 (1984) 141–145.

    ADS  Google Scholar 

  • D.A. Williams, T.W. Hartquist and D.C.B. Whittet. The ice threshold in molecular clouds: a diagnostic of the infrared radiation field. Mon. Not. Roy. Astron. Soc. 258 (1992) 599–601.

    ADS  Google Scholar 

  • J.P. Williams and L. Blitz. The density structure in the Rosette molecular cloud: Signposts of evolution. Astrophys. J., in press.

    Google Scholar 

  • S.P. Willner, R.W. Russell, R.C. Puetter, B.T. Soifer and P.M. Harvey. The 4–8 micron spectrum of the galactic center. Astrophys. J. 229 (1979) L65–L68.

    Article  ADS  Google Scholar 

  • S.P. Willner, F.C. Gillett, T.L. Heiter, B. Jones, K.M. Merrill, J.L. Pipher, R.C. Puetter, R.J. Rudy, R.W. Russell and B.T. Soifer. Infrared spectra of protostars: Composition of the dust shells. Astrophys. J. 253 (1982) 174–187.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schutte, W.A. (1996). Formation and Evolution of Interstellar Icy Grain Mantles. In: Greenberg, J.M. (eds) The Cosmic Dust Connection. NATO ASI Series, vol 487. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5652-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5652-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6384-5

  • Online ISBN: 978-94-011-5652-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics