Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 330))

Abstract

On the nanometer scale or the molecular level the boundaries between physics, chemistry, biology, medical and engineering science seem to disappear and all the disciplines have a common center of research. A deeper knowledge of the life-processes in biology a more detailed understanding in chemistry, medical science and genetics as well as of the growth of novel materials and its characterization in material science demands tools with highest — in particular cases atomic — lateral resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig and H. Rohrer. Scanning tunneling microscopy. Helv. Phys. Acta, 55: 726, 1982.

    Google Scholar 

  2. G. Binnig, C. F. Quate, and C. Gerber. Atomic Force Microscope. Phys. Rev. Lett., 56: 930–933, 1986.

    Article  ADS  Google Scholar 

  3. N. D. Lang. STM Imaging of Single-Atom Adsorbates on Metals. In Wiesen-danger, R. and Güntherodt, H.-J., editor, Scanning Tunneling Microscopy III, pages 7–21. Springer, Berlin, 1993.

    Chapter  Google Scholar 

  4. G. Doyen. The scattering theoretical approach to the Scanning Tunneling Microscope. In Wiesendanger, R. and Güntherodt, H.-J., editor, Scanning Tunneling Microscopy III, pages 22–50. Springer, Berlin, 1993.

    Google Scholar 

  5. J. Tersoff. Theory of Scanning Tunneling Microscopy. In D. A. Bonnell, editor, Scanning Tunneling Microscopy and Spectroscopy, pages 31–50. VCH Publishers, New York, 1993.

    Google Scholar 

  6. Y. Kuk. STM on Metals. In Güntherodt, H.-J. and Wiesendanger, R., editor, Scanning Tunneling Microscopy I, pages 17–38. Springer, Berlin, 1994.

    Chapter  Google Scholar 

  7. D. A. Bonnell. Scanning Tunneling Microscopy and Spectroscopy. VCH, New York, 1993.

    Google Scholar 

  8. R. J. Hamers. Methods of tunneling spectroscopy with the STM. In D. A. Bonnell, editor, Scanning Tunneling Microscopy and Spectroscopy, pages 51–99. VCH, New York, 1993.

    Google Scholar 

  9. G. Rohrer. The Preparation of Tip and Sample Surfaces for STM. In D. A. Bonnell, editor, Scanning Tunneling Microscopy and Spectroscopy, pages 155–188. VCH Publishers, New York, 1993.

    Google Scholar 

  10. D. Sarid. Scanning Force Microscopy. Oxford University Press, New York, 1991.

    Google Scholar 

  11. E. Meyer. Atomic force microscopy. Surf. Sci., 41: 3, 1992.

    Google Scholar 

  12. N. A. Burnham and R. J. Colton. Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol., A7: 2906, 1989.

    ADS  Google Scholar 

  13. D. Rugar, H. J. Mamin, and P. Guethner. Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett., 55: 2588, 1989.

    Article  ADS  Google Scholar 

  14. S. R. Cohen. An evaluation of the use of atomic force microscope for studies in nanomechanics. Ultramicroscopy, 42–44: 66, 1992.

    Google Scholar 

  15. Y. Martin, D. W. Abraham, and H. K. Wickramasinghe. High-resulution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett., 52: 1103–1105, 1988.

    Article  ADS  Google Scholar 

  16. Y. Huang and C. C. Williams. Quantative two-dimensional dopant profile measurement and inverse modelling vy scanning capacitance microscopy. Appl. Phys. Lett., 66 (3): 344–346, 1995.

    Article  ADS  Google Scholar 

  17. Y. Huang and C. C. Williams. Direct comparison of cross-sectional scanning capacitance microscopy and vertical secondary ion-mass spectroscopy profile. J. Vac. Sci. Technol. B, 14 (1): 433–436, 1996.

    Article  Google Scholar 

  18. D. W. Pohl, W. Denk, and M. Lanz. Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett., 44: 651–653, 1984.

    Article  ADS  Google Scholar 

  19. D. W. Pohl, U. Ch. Fischer, and U. T. Duerig. Scanning near-field optical microscopy (SNOM): basic principles and some recent developments. SPIE, 897: 84–90, 1988.

    Google Scholar 

  20. E. Betzig and J. K. Trautman. Polarization contrast in near-field scanning optical microscopy. Applied Optics, 31: 4563–4568, 1992.

    Article  ADS  Google Scholar 

  21. U. Ch. Fischer and M. Zapletal. The concept of a coaxial tip as a probe for scanning near field optical microscopy and steps towards a realisation. Ultramicroscopy, 42–44: 393–398, 1992.

    Article  Google Scholar 

  22. A. Majumdar, J. P. Carrejo, J. Lai, and M. Chandrachood. Thermal imaging of electronic materials and devices using the atomic force microscope. SPIE Vol., 1855: 209–217, 1993.

    Article  ADS  Google Scholar 

  23. R. Heiderhoff, P. Koschinski, M. Maywald, L. J. Balk, and P. K. Bachmann. Correlation of the electrical, thermal, and optical properties of CVD diamond films by scanning microscopy techniques. Diamond Rel. Mater., 4: 645–651, 1995.

    Article  ADS  Google Scholar 

  24. Y. Martin and H. K. Wickramasinghe. Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl. Phys. Lett., 50: 1455–1457, 1987.

    Article  ADS  Google Scholar 

  25. R. Wiesendanger. Scanning Probe Microscopy and Spectroscopy. Cambridge University Press, 1994.

    Book  Google Scholar 

  26. P. Grütter, E. Meyer, H. Heinzelmann, L. Rosenthaler, H. R. Hidber, and H. J. Güntherodt. Application of atomic force microscopy to magnetic materials. J. Vac. Sci. Technol., A6: 279, 1988.

    ADS  Google Scholar 

  27. M. Tortonese, H. Yamada, R.C. Barett, and C. F. Quate. Atomic Force Microscopy using a piezoresistive Cantilever. IEEE, 91CH2817–5: 448, 1991.

    Google Scholar 

  28. M. Tortonese, R.C. Barett, and C. F. Quate. Atomic resolution with Atomic Force Microscope using piezoresistive detection. Appl. Phys. Lett., 62 (8): 834, 1993.

    Article  ADS  Google Scholar 

  29. F. Sauter. Festkörperprobleme II. Vieweg & Sohn, 1963.

    Book  MATH  Google Scholar 

  30. Y. Kanda. A graphical representation of the piezoresistance coefficients in silicon. IEEE, 29,1: 64, 1982.

    Google Scholar 

  31. M. W. J. Prins, R. H. M. Groenveld, D. L. Abraham, and H. van Kempen. Naer-field magneto-optical imaging in scanning tunneling microscopy. Appl. Phys. Lett., 66 (9): 1141–1143, 1995.

    Article  ADS  Google Scholar 

  32. A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, E. R. Miller, R. Wolfe, J. van der Ziel, and T. Y. Chang.. Appl. Phys. Lett., 61: 1974, 1992.

    Article  ADS  Google Scholar 

  33. C. Mihalcea, W. Scholze, S. Werner, S. Münster, E. Oesterschulze, and R. Kassing. Multi-Purpose Sensor Tips for Scanning Nearfield Microscopy. Accepted for publication in Appl. Phys. Lett., 1996.

    Google Scholar 

  34. A. Leyk, C. Böhm, D. van der Weide, and E. Kubalek. 104 GHz Signals Measured by a High Frequency Scanning Force Microscope Testsystem. Electron. Lett., 31 (13): 1046–1047, 1995.

    Article  Google Scholar 

  35. M. Stopka, L. Hadjiiski, E. Oesterschulze, and R. Kassing. Surface investigations by scanning thermal microscopy. JVST B, 13: 2153–2156, 1995.

    ADS  Google Scholar 

  36. E. Oesterschulze and M. Stopka. Photothermal Imaging by Scanning Thermal Microscopy. accepted for publication in J. Vac. Sci. Technol. A, 1996.

    Google Scholar 

  37. E. Oesterschulze and M. Stopka. Imaging of thermal properties and topography by scanning thermal and scanning tunneling microscopy. Microelectr. Eng., 31: 241–248, 1996.

    Article  Google Scholar 

  38. E. Oesterschulze, M. Stopka, L. Hadjiiski, and R. Kassing. Investigation of Surfaces with Miniaturized Thermal Probes. In O. Marti and R. Möller, editor, Photons and Local Probes, pages 345–350. Kluwer Academic Publishers, 1995.

    Chapter  Google Scholar 

  39. M. Maywald, R. J. Pylkki, and L. J. Balk. Imaging of local thermal and electrical conductivity with scanning force microscopy. Scanning Microsc., 8: 181–188, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kassing, R., Oesterschulze, E. (1997). Sensors for Scanning Probe Microscopy. In: Bhushan, B. (eds) Micro/Nanotribology and Its Applications. NATO ASI Series, vol 330. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5646-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5646-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6381-4

  • Online ISBN: 978-94-011-5646-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics