Skip to main content

Unique hues in heterozygotes for protan and deutan deficiencies

  • Chapter
Colour Vision Deficiencies XIII

Part of the book series: Documenta Ophthalmologica Proceedings Series ((DOPS,volume 59))

Abstract

We measured the wavelengths of unique blue, green, and yellow in a population of normal women and carriers of different forms of red-green deficiencies. In the case of unique blue and green none of the groups of heterozygotes differed significantly from normals. In the case of unique yellow, at a retinal illuminance of 800 td, carriers of protanomaly made settings at significantly shorter wavelengths than any other group. Carriers of deuteranomaly, deuteranopia and protanopia did not differ from normal individuals. At 20 td none of the groups of heterozygotes differed from normal. Our results offer no support for the hypothesis of Cicerone (1987) that the wavelength seen as unique yellow is determined primarily by the relative numbers of L to M cones. Nor do we have any evidence for the report of Donders (1884) that the settings of unique yellow vary with Rayleigh matches

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akita M., Ejima Y. and Takahashi S. (1982). Differences in unique-yellow loci between individuals. Color Res. Appl. 7: 168–172

    Article  Google Scholar 

  • Alpern M. and Moeller J. (1977). The red and green cone visual pigments of deuteranomalous trichromacy. J. Physiol. (Lond.) 266: 647–675

    PubMed  CAS  Google Scholar 

  • Cicerone CM. (1987). Constraints placed on color vision models by the relative numbers of different cone classes in human fovea centralis. Die Farbe 34: 59–66

    Google Scholar 

  • Born G, Grützner P. and Hemminger H. (1976). Evidenz für eine Mosaikstruktur der Netzhaut bei Konduktorinnen für Dichromasie. Hum. Genet. 32: 189–196

    Article  PubMed  CAS  Google Scholar 

  • de Vries H. (1948). The hereditary of the relative numbers of red and green receptors in the human eye. Genetica 24: 199–212

    Article  Google Scholar 

  • Dimmick F.L. and Hubbard M.R. (1939). The spectral components of psychologically unique red. Am. J. Psych. 52: 348–353

    Article  Google Scholar 

  • Donders F.C. (1884). Farbengleichungen. Arch. Anat. Physiol.: 518–552

    Google Scholar 

  • Grützner P., Born G. and Hemminger H. (1976). Coloured stimuli within the central visual field of carriers of dichromatism. Mod. Probl. Ophthal. 17: 147–150

    Google Scholar 

  • Hailwood J.G. and Roaf H.E. (1937). The sensation of yellow and anomalous trichromatism. J. Physiol. (Lond.) 91: 36–47

    CAS  Google Scholar 

  • Hering E. (1878). Zur Lehre vom Lichtsinne. Sechs Mittheil. an die k. Akad. Wissensch. Wien, 2nd ed. Carl Gerold’s Sohn, Wien

    Google Scholar 

  • Hurvich L.M. and Jameson D. (1957). An opponent-process theory of color vision. Psychol. Rev. 64: 384–404

    Article  PubMed  Google Scholar 

  • Hurvich L.M. and Jameson D. (1964). Does anomalous color vision imply color weakness? Psychon. Sci. 1: 11–12

    Google Scholar 

  • Lyon M.F. (1972). X-chromosome inactivation and developmental patterns in mammals. Biol. Rev. 47: 1–35

    Article  PubMed  CAS  Google Scholar 

  • Mollon J.D. (1982). Color vision. Annu. Rev. Psychol. 33: 41–85

    Article  PubMed  CAS  Google Scholar 

  • Neitz J. and Neitz M. (1994). Color vision defects. In: Wright A.F. and Jay B. (eds.), Molecular Genetics of Inherited Eye Disorders: 217–257. Harwood Academic, Reading

    Google Scholar 

  • Pokorny J. and Smith V.C. (1977). Evaluation of single-pigment shift model of anomalous trichromacy. J. Opt. Soc. Am. 67: 1196–1209

    Article  PubMed  CAS  Google Scholar 

  • Schmidt I. (1934). Ãœber manifeste Heterozygotie bei Konduktorinnen für Farbensinnstörungen. Klin. Mbl. Augenheilk. 92: 456–467

    Google Scholar 

  • Westphal H. (1910). Unmittelbare Bestimmungen der Urfarben. Z. Sinnesphysiol. 44: 182–230

    Google Scholar 

  • Winderickx J., Lindsey D.T., Sanocki E., Teller D.Y., Motulsky A.G. and Deeb S.S. (1992). Polymorphism in the red photopigment underlies variation in color matching. Nature 356: 431–433

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. R. Cavonius

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jordan, G., Mollon, J.D. (1997). Unique hues in heterozygotes for protan and deutan deficiencies. In: Cavonius, C.R. (eds) Colour Vision Deficiencies XIII. Documenta Ophthalmologica Proceedings Series, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5408-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5408-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6275-6

  • Online ISBN: 978-94-011-5408-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics