Skip to main content

Abstract

Orly’s doctoral research was devoted to studying the processes of justification and proving in geometry, used by the pupils she taught in the 9th and 10th grade. After two years of research her findings lead her in a new direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. DE Villiers, M. D.: An alternative approach to proof in dynamic geometry, In R. Lehrer & D. Chazan (Eds), Designing Learning Environments for Developing Understanding of Geometry and Space, Lawrence Erlbaum Ass. (in press).

    Google Scholar 

  2. Dreyfus, T.: On the status of visual reasoning in mathematics and mathematics education, In the Proceedings of the 15h Conference of the Pme, Assisi (Italy). Vol. 1, pp. 33–48, 1991.

    Google Scholar 

  3. Gravemeijer, K.: From a different perspective: building on students’ informal knowledge, In R. Lehrer & D. Chazan (Eds), Designing Learning Environments for Developing Understanding of Geometry and Space, Lawrence Erlbaum Ass. (in press).

    Google Scholar 

  4. Hanna, G.: Some pedagogical aspects of proof, Interchange, Vol. 21, No. 1, pp. 6–23, 1990.

    Google Scholar 

  5. Hanna, G.: The ongoing value of proof, In Puig L. & Gutierrez A. (Eds). Proceedings of the 20th Conference of the PME, Valencia (Spain) pp. I–21–I-34, 1996.

    Google Scholar 

  6. Hershkowitz, R., Parzysz, B. & VAN Dormolen, J.: Space and Shape, In A. J. Bishop et al. (Eds) International Handbook of Mathematics Education, Kluwer, pp. 161–204, 1996.

    Google Scholar 

  7. Hershkowitz, R.: Visualization in geometry: two sides of the coin, Focus on learning problems in mathematics. Vol 11(1), pp. 61–76, 1989.

    Google Scholar 

  8. Lampert, M.: When the problem is not the question and the solution is not the answer, Mathematical knowing and teaching, American Educational Research Journal, Vol 27, No. 1, pp, 29–63, 1990.

    Google Scholar 

  9. VON Glaserfeld, E.: Radical Constructivism in Mathematics Education, Reidel, 1988.

    Google Scholar 

  10. Vygotsky, L. S.: Mind and Society, The development of higher psychological processes, Havard University Press, 1978.

    Google Scholar 

  11. Wersch, J. V., & Stone, C A.: The concept of internalization in Vygotsky’s account of the genesis of higher mental functions, In J. V. Wertsch,(Ed): Culture communication and cognition, pp. 162–179. Cambridge University Press, 1989.

    Google Scholar 

  12. Zimmerman, W. &: Cunnigham, S.: What is mathematical visualization?, in W. Zimmeman & S., Cunnigham (Eds), Visualization in Teaching and Learning Mathematics, Mathematical Association of America, 1991.

    Google Scholar 

References

  1. Duval, R.: Approche cognitive des problèmes de géométrie en termes de congruence, Annales de Didactique et de Sciences cognitives, 1], 57–74, 1988.

    Google Scholar 

  2. Duval, R.: Structure du raisonnement déductif et apprentissage de la Démonstration, Educational Studies in Mathematics. 22,3, p.233–261, 1991.

    Google Scholar 

  3. Duval, R.: Argumenter, démontrer, expliquer: continuité ou rupture cognitive, Petit x 31, 37–61, 1992.

    Google Scholar 

  4. Duval, R.: Geometrical Pictures: kinds of representation and specific processes, in Exploiting Mental Imagery with Computers in Mathematic Education (Sutherland & Mason Eds), Springer p. 142–157, 1995.

    Google Scholar 

  5. Duval, R.: Sémiosis et pensée humaine, Peter Lang, Berne, 1995.

    Google Scholar 

  6. Laborde, C.: Enseigner la géométrie, Bulletin de l’A.P.M.E.P., 396, 523–548, 1994.

    Google Scholar 

  7. Lémonidis, E. C.: Conception, réalisation et résultats d’une expérience d’enseignement de l’homothétie, Thèse U.L.P.: Strasbourg, 1990.

    Google Scholar 

  8. Mesquita, A.: Sur une situation d’éveil à la déduction en géométrie, Educational Studies in Mathematics, 20, 55–77, 1989.

    Google Scholar 

  9. Mesquita, A.: L’influence des aspects figuratifs dans l’argumentation des élèves en géométrie: éléments pour une typologie, Thèse U.L.P.: Strasbourg, 1989.

    Google Scholar 

  10. Padilla, V.: Les Figures aident-elles à voir en géométrie?, Annales de Didactique et de Sciences Cognitives, 3, 223–252, 1990.

    Google Scholar 

  11. Padilla, V.: L’influence d’une acquisition de traitements purement ûguraux pour l’apprentissage des mathématiques, Thèse U.L.P., Strasbourg. 1992.

    Google Scholar 

  12. Piaget, J.: La naissance de l’intelligence chez l’enfant, Delachaux, Neuchatel, 1968.

    Google Scholar 

  13. Rommevaux, M.P.: Le discernement des plans: un seuil décisif dans l’apprentissage de la géométrie tridimensionnelle, Thèse U.L.P.: Strasbourg, 1997.

    Google Scholar 

References

  1. Balacheff, N.: Processus de preuve chez des élèves de collège, Thèse de doctorat d’état, Université de Grenoble, 1988.

    Google Scholar 

  2. BARTOLINI Bussi, M. & PERGOLA M.: History in the Mathematics Classroom: Linkages and Kinematic Geometry, in Jahnke H. N., Knoche N. & Otte M. (Eds), Geschichte der Mathematik in der Lehre, Vandenhoeck & Ruprecht, pp 39–67, 1996.

    Google Scholar 

  3. BARTOLINI Bussi, M.: Mathematical Discussion and Perspective Drawing in Primary School, Educational Studies in Mathematics, 31(1-2), 11–41, 1996.

    Google Scholar 

  4. Bishop, A.: Mathematical Enculturation, A Cultural Perspective on Mathematics Education, Kluwer, 1988.

    Google Scholar 

  5. Boero, P.: Mathematical Literacy for All: Experiences and Problems, Proceedings of XIII PME Conference, Paris, Vol. 1, pp. 62–76, 1989.

    Google Scholar 

  6. Boero, P.: Semantic Fields Suggested by History: Their Function in the Acquisition of Mathematical Concepts, Zentralblatt fÜr Didaktik der Mathematik, 20, 128–133, 1989.

    Google Scholar 

  7. Boero, P.: On long term development of some general skills in problem solving: a longitudinal comparative study, Proceedings of XIV PME Conference, Oaxtepec, Vol. 2, pp. 169–176, 1990.

    Google Scholar 

  8. Boero, P.: The crucial role of semantic fields in the development of problem solving skills, in J. P. Ponte et al. (Eds), Mathematical Problem Solving and New Information Technologies, Springer, pp. 77–91, 1992.

    Google Scholar 

  9. Boero, P.: Situations didactiques et problèmes d’apprentissage: convergences et divergences dans les perspectives de recherche, in M. Artigue, R. Gras, C. Laborde, P. Tavignot (Eds), Actes du Colloque International “Vingt ans de did. des math, en France”, Paris; La Pensée Sauvage, pp. 17–50, 1993.

    Google Scholar 

  10. Boero, P.; & Garuti, R.: Approaching rational geometry: from physical relationships to conditional statements, Proceedings of XVIII PME Conference, Lisbon, vol. 2, pp. 96–103, 1994.

    Google Scholar 

  11. Boero, P.; Dapueto, C., Ferrari, P., Ferrero, E., Garuti, R., Lemut, E., Parenti, L. & Scali, E.: Aspects of the Mathematics-Culture Relationship in Mathematics Teaching-Learning in Compulsory School, Proceedings of XIX PME Conference, Recife, Vol. 1, pp. 151–166, 1995.

    Google Scholar 

  12. Boero, P.; Garuti, R. & Mariotti, M.A.: Some dyn,mic mental processes underlying producing and proving conjectures, Proceedings of XX PME Conference, Valencia, Vol. 2, pp. 113–120, 1996.

    Google Scholar 

  13. Boero, P., Garuti, R., Lemut, E. & Mariotti, M.A.: Challenging the traditional school approach to theorems: a hypothesis about the cognitive unity of theorems, Proceedings of XX PME Conference, Valencia, Vol. 2, pp. 121–128, 1996.

    Google Scholar 

  14. Chevallard Y.: La transposition didactique, La pensée sauvage, 1991.

    Google Scholar 

  15. DOUADY R.: Jeux de cadres et dialectique outil-objet dans l’enseignement des mathématiques, Thèse de doctorat d’état, Université Paris VII, 1984.

    Google Scholar 

  16. Ferrari, P.L.: Aspects of Hypothetical Reasoning in Problem Solving, in J. P. Ponte et al. (Eds), Mathematical Problem Solving and New Information Technologies, Springer, pp. 125–136, 1992.

    Google Scholar 

  17. Fischbein, E.: The irrational numbers and corresponding epistemological obstacles, Proceedings of XVIII PME Conference, Lisboa, Vol. 2, pp. 352–359, 1994.

    Google Scholar 

  18. Garuti, R. & Boero, P.: A sequence of proportionality problems: an exploratory study, Proceedings of XVI PME Conference, Durham, N. H., Vol.1, pp. 225–232, 1992.

    Google Scholar 

  19. Garuti, R. SZ Boero, P.: Mathematical modelling of the elongation of a spring: given a double length spring …., Proceedings of XVIII PME Conference, Lisboa, Vol. 2, pp. 384–391, 1994.

    Google Scholar 

  20. MARIOTTI M. A., BARTOLINI BUSSI M., BOERO P., FERRI F. & GARUTI R.: Approaching Geometry Theorems in Contexts: From History and Epistemology to Cognition, in Proceedings of XXI PME Conference, Lahti, pp. 180–195, 1997.

    Google Scholar 

  21. Scali, E.: Le rôle du dessin dans la modélisation géométrique élémentaire des phénomènes astronomiques, Proceedings of 46th CIEAEM Conference, IREM Toulouse, Vol., pp. 168–176, 1996.

    Google Scholar 

  22. Vergnaud, G.: La théorie des champs conceptuels, Recherches en didactique des mathématiques, 10, 133–170, 1990.

    Google Scholar 

References

  1. Carpenter, T.P. & Fennema, E.: Cognitively Guided Instruction: Building on the knowledge of students and teachers, Intern. Journ. of Educational Research, 17, 457–470, 1992.

    Google Scholar 

  2. Clark, C. M. & Peterson, P. L.: Teachers’ thought processes, in M. C. Wittrock (Ed), Handbook of research on teaching, Macmillan, pp. 255–296, 1986.

    Google Scholar 

  3. Cobb, P., Yackel, E., & Wood, T.: The teaching experiment classroom, in P. Cobb & H. Bauersfeld (Eds), The emergence of mathematical meaning. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 17–24, 1995.

    Google Scholar 

  4. Fennema, E. & Franke, M. L.: Teachers’ knowledge and its impact, in D. A. Grouws (Ed), Handbook of research on mathematics teaching and learning, Macmillan, pp. 147–164, 1992.

    Google Scholar 

  5. Freudenthal, H.: Didactical phenomenology of mathematical structures, D. Reidel, 1983.

    Google Scholar 

  6. Gauvain, M.: The development of spatial thinking in everyday activity, Developmental Review, 13, 92–121, 1993.

    Google Scholar 

  7. Olson, D. R.: Cognitive development. The child’s acquisition of diagonality, Academic Press, 1970.

    Google Scholar 

  8. Piaget, J. & Inhelder, B.: The Child’s Conception of Space, W. W. Norton, 1948/1967.

    Google Scholar 

  9. Schifter, D. & Fosnot, C. T.: Reconstructing mathematics education. Stories of teachers meeting the challenge of reform, Teachers College Press, 1993.

    Google Scholar 

  10. Streefland, L.: Realistic mathematics education in primary school, Utrecht, Center for Science and Mathematics Education, 1991.

    Google Scholar 

  11. Stron, A., & Lehrer, R.: Springboards to algebra, J. Kaput (Ed), Employing children’s natural powers to build algebraic reasoning in the context of elementary mathematics (in preparation).

    Google Scholar 

  12. VAN Hiele, P. M.: Structure and insight, Academic Press, 1986.

    Google Scholar 

  13. Watt, D. & Shanahan, S.: Math and More, 2, Teacher Guide (21–64). International Business Machines Corp., Atlanta, 1994.

    Google Scholar 

  14. Wertsch, J. V.: Voices of the mind: A sociocultural approach to mediated action, Harvard University Press, 1991.

    Google Scholar 

  15. Vygotsky, L. S.: Mind and society: The development of higher psychological processes, Harvard University Press, 1978.

    Google Scholar 

References

  1. ACREDOLO J.P.: Small and large-scale concepts in infancy and childhood, Spatial representation and behaviour across the life span, Liben, Patterson, Academic press, 1981.

    Google Scholar 

  2. BERTHELOT R. & SALIN M. H.: L’enseignement de l’espace et de la géométrie dans la scolarité obligatoire, thèse, Université de Bordeaux 1, 1992.

    Google Scholar 

  3. BERTHELOT R. & SALIN M. H.: Common spatial representations and their effects upon teaching and learning of space and geometry, PME 18 proceedings, vol. II, pp.72–80, 1994.

    Google Scholar 

  4. BERTHELOT R. & SALIN M. H.: L’enseignement des angles aux eJèves de 10 à 12 ans, identification d’un obstacle didactique, in: Revue des sciences de l’Education, numéro thématique, Quebec, (1996).

    Google Scholar 

  5. BROUSSEAU G.: Etudes de questions d’enseignement. Un exemple: la géométrie, Séminaire de didactique des mathématiques et de l’informatique, LSD Imag, Université J. Fourier, Grenoble, (1982–1983), 1983.

    Google Scholar 

  6. CORDIER F. & CORDIER J.: L’application du théorème de Thales. Un exemple du rôle des representations typiques comme biais cognitifs, Recherches en Didactique des Mathématiques, vol 11.1, pp. 45–64.

    Google Scholar 

  7. DUVAL R.: Structure du raisonnement deductif et apprentissage de la demonstration, Educational Studies in Mathematics, Vol 22.3, 233–261, 1991.

    Google Scholar 

  8. FISCHBEIN E.: The theory of figurai concepts, Educational Studies in Mathematics 24, 139–162, 1993.

    Google Scholar 

  9. GALVEZ G.: El aprendizage de la orientation en el espacio urbano: una proposiciôn para la ensenanza de la geometria en la escuela primaria, Tesis, Centro de investigacion del IPN, Mexico, 1985.

    Google Scholar 

  10. HERSHKOWITZ R.: Psychological Aspects of Learning Geometry in Mathematics and Cognition, Nesher P. & Kilpatrick J. (Eds), Cambridge University Press, pp. 70–95, 1990.

    Google Scholar 

  11. LABORDE C.: L’enseignement de la géométrie en tant que terrain d’exploration de phénomènes didactiques, Recherches en didactique des mathématiques 9/3, 337–364, 1988.

    Google Scholar 

  12. PARZYSZ B.: Representations of space and student’s conceptions at high school level, in Educational Studies in Mathematics 22, pp. 575–593, 1991.

    Google Scholar 

  13. WEIL-FASSIMA & RACHEDI: Mise en relation d’un espace reel et de sa figuration sur un plan par des adultes de bas niveaux de formation, in Espaces graphiques et graphismes d’espace, La Pensée Sauvage, 1993.

    Google Scholar 

References

  1. Cooney, J. B.: Reflections on the Origin of Mathematical Intuition and some Implications for Instruction, Learning and Individual Differences 3(1), 83–107. 1991.

    Google Scholar 

  2. Fischbein, E.: Intuition in Science and Mathematics: an educational approach, Reidel, 1987.

    Google Scholar 

  3. Fischbein, E.: The Interaction between the Formal, the Algorithmic and the Intuitive Components in a Mathematical Activity, In Biehler, R et al. (Eds), Didactics of Mathematics as a Scientific Discipline. Reidel, 1994.

    Google Scholar 

  4. Fuys, D. et al: The Van Hiele Model of Thinking in Geometry among Adolescents, Journal for Research in Mathematics Education Monograph 3. Reston, VA: NCTM, 1988.

    Google Scholar 

  5. Jones, K.: Researching Geometrical Intuition, Proceedings of the British Society for Research into Learning Mathematics pp. 15–19, November 1993.

    Google Scholar 

  6. Piaget, J.: GeneraJ Psychological Problems of Logico-Mathematical Thought, in Mathematical Epistemology and Psychology by Beth, E. W. and Piaget, J., Reidel, 1966.

    Google Scholar 

  7. MATHEMATICAL ASSOCIATION: The Teaching of Geometry in Schools, London: Bell, 1923.

    Google Scholar 

  8. NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS: Curriculum and Evaluation Standards for School Mathematics, Reston, Va: Nctm, 1989.

    Google Scholar 

  9. Schoenfeld, A. H.: Mathematical Problem Solving, Academic Press, 1985.

    Google Scholar 

  10. Schoenfeld, A. H.: On Having and Using Geometrical Knowledge, In Hiebert, J. (Ed), Conceptual and Procedural Knowledge: the case of mathematics. Hillsdale, NJ: LEA, 1986.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hershkowitz, R. et al. (1998). Reasoning in Geometry. In: Mammana, C., Villani, V. (eds) Perspectives on the Teaching of Geometry for the 21st Century. New ICMI Study Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5226-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5226-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-4991-4

  • Online ISBN: 978-94-011-5226-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics