Skip to main content

Stardust Mineralogy

The Laboratory Approach

  • Chapter
Formation and Evolution of Solids in Space

Part of the book series: NATO ASI Series ((ASIC,volume 523))

Abstract

Some basic mineralogical problems which are not always adequately considered in the astrophysical investigation of solids in circum-stellar envelopes around evolved stars (stardust) are discussed: adequacy of mineralogical terms, identification problems, universality claim, amorphousness vs. crystallinity, heterogeneous grain structure, and spectral masking. The state of the art in the laboratory simulation of the main groups of stardust solids detected in oxygen-rich and carbon-rich circumstellar solids is critically reviewed: silicates, oxides, carbides, nitrides, sulfides and diamonds. Relevant laboratory data on presolar grains in meteorites and interplanetary dust particles are compared with the astrophysical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E. and Zinner, E. (1993) Interstellar grains in primitive meteorites: diamond, silicon carbide, and graphite, Meteoritics 28, 490–514.

    ADS  Google Scholar 

  2. Banhart, F. and Ajayan, P.M. (1996) Carbon onions as nanoscopic pressure cells for diamond formation, Nature 382, 433–435.

    Article  ADS  Google Scholar 

  3. Barker Jr., A. S. (1963) Infrared lattice vibrations and dielectric dispersion in corundum, Phys. Rev. 132, 1474–1481.

    Article  ADS  Google Scholar 

  4. Baron, Y., de Muizon, M., Papoular, R., and Pégourie, B. (1987) An analysis of the emission features of the IRAS low-resolution spectra of carbon stars, Astron. Astrophys. 186, 271–279.

    ADS  Google Scholar 

  5. Begemann, B., Dorschner, J., Henning, T., Mutschke H., and Thamm, E. (1994) A laboratory approach to the interstellar sulfide dust problem, Astrophys. J. 423, L71–L74.

    Article  ADS  Google Scholar 

  6. Begemann, B., Henning, Th., Mutschke, H., and Dorschner, J. (1995) Magnesiumiron oxides — astrophysical origin and optical constants, Planet. Space Sci. 43, 1257–1261.

    Article  ADS  Google Scholar 

  7. Begemann, B., Dorschner, J., Henning, Th., and Mutschke, H. (1996) Optical properties of glassy SiS2 and the 21 micron feature, Astrophys. J. 464, L195–L198.

    Article  ADS  Google Scholar 

  8. Begemann, B., Dorschner, J., Henning, Th., Mutschke, H., Gürtler, Kömpe, C. and Nass, R. (1997) Aluminum oxide and the opacity of oxygen-rich circumstellar dust in the 12–17 micron range, Astrophys. J. 476, 199–208.

    Article  ADS  Google Scholar 

  9. Bernatowicz, T.J., Gibbons, P.C., and Lewis, R.S. (1990) Electron energy loss spectrometry of interstellar diamonds, Astrophys. J. 359, 246–255.

    Article  ADS  Google Scholar 

  10. Bernatowicz, T.J., Amari, S., Zinner, E.K., and Lewis, R.S. (1991) Interstellar grains within interstellar grains, Astrophys. J. 373, L73–L76.

    Article  ADS  Google Scholar 

  11. Bernatowicz, T.J., Cowsik, R., Gibbons, P.C., Lodders, K., Fegley, Jr., B., Amari, S., and Lewis, R.S. (1996) Constraints on stellar grain formation from presolar graphite in the Murchison meteorite, Astrophys. J. 472, 760–782.

    Article  ADS  Google Scholar 

  12. Bohren, C. F. and Huffman, D. R. (1983) Absorption and Scattering of Light by Small Particles, Wiley, New York.

    Google Scholar 

  13. Bond, H.E. (1991) Chemical composition of post-AGB stars, in G. Michaud and A. Tutukov (eds.), Evolution of Stars: The Photo spheric Abundance Connection, Kluwer Academic Publisher, Dordrecht, pp. 341–349.

    Chapter  Google Scholar 

  14. Borghesi, A., Bussoletti, E., Colangeli, L., and De Blasi, C. (1985) Laboratory Study of SiC submicron particles at IR wavelengths: a comparative analysis, Astron. Astrophys. 153, 1–8.

    ADS  Google Scholar 

  15. Bradley, J. and Ireland, T. (1996) The search for interstellar components in interplanetary dust particles, in B.A.S Gustafson and M.S. Hanner (eds.), Physics, Chemistry, and Dynamics of Interplanetary Dust, A.S.P. Conf. Ser. 104, San Francisco, pp. 275–282.

    Google Scholar 

  16. Bradley, J. (1997), this volume

    Google Scholar 

  17. Bürki, P.R. (1996) Low-pressure formation routes for interstellar microdiamonds: chemical vapour deposition vs. homogeneous nucleation, Meteoritics 31, A24–A25.

    Google Scholar 

  18. Buss Jr., R. H., Cohen, M., Tielens, A. G. G. M., Werner, M. W., Bregman, J. D., Witteborn, F. C., Rank, D., and Sandford, S.A. (1990) Hydrocarbon emission features in the infrared spectrum of warm supergiants, Astrophys. J. 365, L23–L26.

    Article  ADS  Google Scholar 

  19. Bussoletti, E., Fusco, C., Longo, G. (eds.) (1988) Experiments on Cosmic Dust Analogues, ASS Library 149, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  20. Clayton, D. D. (1982) Cosmic chemical memory: a new astronomy, Q. J. Roy. Astron. Soc. 23, 174–212.

    ADS  Google Scholar 

  21. Clément, D. (1996) Spectroskopische Untersuchungen an amorphem Siliciumcarbid und Vergleich mit astronomischen Infrarotquellen, Diploma Thesis, Gesamthochschule Kassel und Max-Planck-Gesellschaft, AG “Staub in Sternentstehungsgebieten” an der Universität Jena.

    Google Scholar 

  22. Cox, P. (1993), Far-infrared spectroscopy of solid state features, in S. Kwok (ed.), Astronomical Infrared Spectroscopy: Future Observational Directions, A.S.P. Conf. Ser. 41, San Francisco, pp. 163–170.

    Google Scholar 

  23. Dominik, C, Sedlmayr, E., and Gail, H.-P. (1993) Dust formation in stellar winds. VI. Moment equations for the formation of heterogeneous and core-mantle grains, Astron. Astrophys. 277, 578–594.

    ADS  Google Scholar 

  24. Donn, B. (1986) Experimental investigations relating to the properties and formation of cosmic grains, in J. A. Nuth III and R. E. Stencel (eds.) Interrelationships Among Circumstellar, Interstellar, and Interplanetary Dust, NASA Conf. Publ. 2403, pp. 109–134.

    Google Scholar 

  25. Dorschner, J. 1967. Theoretische Untersuchungen über den interstellaren Staub. I. Vorschlag eines Staubmodells aus meteoritischen Silikaten, Astron. Nachr. 290, 171–181.

    ADS  Google Scholar 

  26. Dorschner, J. and Schulze, H. (1993) Refractory cometary sulphides and their possible stellar/interstellar origin. Astronomische Gesellschaft Abstract Ser. 9 119.

    ADS  Google Scholar 

  27. Dorschner, J. and Henning, Th. (1995) Dust metamorphosis in the galaxy, Astron. Astrophys. Rev. 6, 271–333.

    Article  ADS  Google Scholar 

  28. Dorschner, J., Friedemann, C, and Gürtler, J. (1977) Silicon carbide and the infrared excess of carbon stars, Astron. Nachr. 298, 279–283

    Article  ADS  Google Scholar 

  29. Dorschner, J., Friedemann, C, Gürtler, J., and Henning, T. (1988) Optical properties of glassy bronzite and the interstellar silicate bands, Astron. A strophys. 198, 223–232.

    ADS  Google Scholar 

  30. Dorschner, J., Gürtler, J., and Henning, Th. (1989) Pyroxene glasses — candidates for the interstellar silicate dust component, Astron. Nachr. 310,303–309.

    Article  ADS  Google Scholar 

  31. Dorschner, J., Begemann, B., Henning, Th., Jäger, C., and Mutschke, H. (1995) Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition Astron. Astrophys. 300, 503–520.

    ADS  Google Scholar 

  32. Dorschner, J., Henning, Th., Jäger, C, Mutschke, H., and Ott, U. (1996) Spectrum and solid-state structure of Murchison diamonds, Meteoritics 31, A37–A38.

    Google Scholar 

  33. Draine, B. T. and Lee, H. M. (1984) Optical properties of interstellar graphite and silicate grains, Astrophys. J. 285, 89–108.

    Article  ADS  Google Scholar 

  34. Fraundorf, P., Fraundorf, G., Bernatowicz, T., Lewis, R., and Tang, M. (1989) Stardust in the TEM, Ultramicroscopy 27 401–412.

    Article  Google Scholar 

  35. Friedemann, Chr. (1969) Evolution of silicon carbide particles in the atmospheres of carbon stars, Physica 41, 139–143.

    Article  ADS  Google Scholar 

  36. Friedemann, C., Gürtler, J., Schmidt, R., and Dorschner, J. (1981) The 11.5 micrometer emission from carbon stars: Comparison with IR spectra of submicrometer-sized silicon carbide grains, Astrophys. Space Sci. 79, 405–417.

    ADS  Google Scholar 

  37. Gail, H.-P., and Sedlmayr, E. (1986) The primary condensation process for dust around late M-type stars, Astron. Astrophys. 166, 225–236.

    ADS  Google Scholar 

  38. Gervais, F., Blin, A., Massiot, D., Coutures, J. P., Chopinet, M. H., Naudin, F. (1987) Infrared reflectivity spectroscopy of silicate glasses, J. Non-Cryst. Solids 89, 384–401.

    Article  ADS  Google Scholar 

  39. Gillett, F.C., Low, F.J., and Stein, W.A. (1968) Stellar spectra from 2.8 to 14 microns, Astrophys. J. 154, 677-pp.

    Google Scholar 

  40. Glaccum, W. (1995) Infrared dust features of late-type stars and planetary nebulae, in M.R. Haas, J.A. Davidson, and E.F. Erickson (eds.), Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, ASP Conf. Ser. 73, San Francisco, p. 395.

    Google Scholar 

  41. Goebel, J.H. (1986) New dust species in circumstellar shells, Bull. Amer. Astron. Soc. 18, 1003–1004.

    ADS  Google Scholar 

  42. Goebel, J. H., and Moseley, S.H. (1985) MgS grain component in circumstellar shells, Astrophys. J. 290, L35–L39.

    Article  ADS  Google Scholar 

  43. Goebel, J. H. (1993) SiS2 in circumstellar shells Astron. iAstrophys. 278, 226–230.

    ADS  Google Scholar 

  44. Goebel, J. H., Volk, K., Walker, H., Gerbault, F., Cheeseman, P., Self, M., Stutz, J., and Taylor, W. (1989) A Bayesian classification of the IRAS LRS Atlas, Astron. Astrophys. 222, L5–L8.

    ADS  Google Scholar 

  45. Goebel, J. H., Bregman, J. D., and Witteborn, F. C. (1994) A 7 micron dust emission feature in oxygen-rich circumstellar shells Astrophys. J. 430, 317–322.

    Article  ADS  Google Scholar 

  46. Goebel, J.H., Cheeseman, P., and Gerbault, F. (1995) The 11 micron emissions of carbon stars, Astrophys. J. 449, 246–257.

    Article  ADS  Google Scholar 

  47. Greenberg, J. M. (1989). The core-mantle model of interstellar grains and the cosmic dust connection, in L. J. Allamandola and A. G. G. M. Tielens (eds.) Interstellar Dust: Proc. IAU Symp. 135, Kluwer Academic Publishers, Dordrecht, pp. 345–355

    Google Scholar 

  48. Greenberg, J.M. (ed.) (1996) The Cosmic Dust Connection NATO ASI Ser. C 487, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  49. Greenberg, J. M., and Li, A. (1996) What are the true astronomical silicates? As-tron. Astrophys. 309, 258–266.

    ADS  Google Scholar 

  50. Grossman, L., and Larimer, J. W. (1974) Early chemical history of the solar system. Rev. Geophys. Space Phys. 12, 71–101.

    Article  ADS  Google Scholar 

  51. Grün, E., Gustafson, B., Mann, I., Baguhl, M., Morfill, G. E., Staubach, P., Taylor, A., and Zook, H. A. (1994) Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924.

    ADS  Google Scholar 

  52. Hackwell, J. A. (1972) Long wavelength spectrometry of M, S and C-stars Astron. Astrophys. 21, 239–248.

    ADS  Google Scholar 

  53. Henning, Th., Begemann, B., Mutschke, H., and Dorschner, J. (1995) Optical properties of oxide dust grains, Astron. Astrophys. Suppl. Ser. 112, 143–149.

    ADS  Google Scholar 

  54. Hill, H.G.M., d’Hendecourt, L.B., and Perron, C. (1996) Can any infrared absorption bands be linked to microdiamonds?, Meteoritics 31, A61–A62.

    Google Scholar 

  55. Huffman, D. R. (1988) Methods and difficulties in laboratory studies of cosmic dust analogues, in E. Bussoletti, C. Fusco, and G. Longo (eds.) Experiments on Cosmic Dust Analogues, ASS Library Vol. 149, Kluwer Academic Publishers, Dordrecht, pp. 25–42.

    Chapter  Google Scholar 

  56. Huffman, D. R. (1988) The applicability of bulk optical constants to small particles, in P. W. Barber and R. K. Chang (eds.) Optical Effects Associated with Small Particles, Advanced Series in Applied Physics, Vol. 1, World Scientific Publ. Co., Singapore, pp. 279–323.

    Google Scholar 

  57. Huffman, D. R. (1989) Pitfalls in calculating scattering by small grains, in L. J. Allamandola and A. G. G. M. Tielens (eds.) Interstellar Dust: Proc. IAU Symp. 135 Kluwer Acad. Publ, Dordrecht, pp. 329–336.

    Google Scholar 

  58. Jäger, C, Mutschke, H., Begemann, B., Dorschner J., and Henning, Th. (1994) Steps toward interstellar silicate mineralogy. I. Laboratory results of a silicate glass of mean cosmic composition. Astron. Astrophys. 292, 641–655

    ADS  Google Scholar 

  59. Jäger, C, Dorschner, J., and Mutschke, H. (1997) Properties of Murchison diamonds, in preparation

    Google Scholar 

  60. Jones, A. P. and Williams, D. A. (1987) Interplanetary material as a guide to the composition of interstellar grains, Mon. Not. R. Astron. Soc. 224, 473–479.

    ADS  Google Scholar 

  61. Kissel, J., et al. (1986a) Composition of comet Halley dust particles from Vega observations, Nature 321, 280–282.

    Article  ADS  Google Scholar 

  62. Kissel, J., et al. (1986b) Composition of comet Halley dust particles from Giotto observations, Nature 321, 336–338.

    Article  ADS  Google Scholar 

  63. Kozasa, T. (1995), unpublished results

    Google Scholar 

  64. Kozasa, T., and Hasegawa, H. (1987) Grain formation through nucleation process II: Nucleation and grain growth accompanied by chemical reaction, Prog. Theor. Phys. 77, 1402–1410.

    Article  ADS  Google Scholar 

  65. Kozasa, T., Hasegawa, H., and Nomoto, K. (1991) Formation of dust grains in the ejecta of SN 1987A. II. Astron. Astrophys. 249, 474–482.

    ADS  Google Scholar 

  66. Kozasa, T., Dorschner, J., Henning, Th., Stognienko, R. (1996) Formation of SiC grains and the 11.3 µm feature in circumstellar envelopes of carbon stars, Astron. Astrophys. 307, 551–560.

    ADS  Google Scholar 

  67. Krätschmer, W. (1988) Laboratory production of amorphous silicates, in E. Bussoletti, C. Fusco, and G. Longo (eds.) Experiments on Cosmic Dust Analogues, ASS Library Vol. 149, Kluwer Academic Publishers, Dordrecht, pp. 95–102.

    Chapter  Google Scholar 

  68. Kwok, S., Volk, K. M., Hrivnak, B. J. (1989) A 21 micron emission feature in four proto-planetary nebulae, Astrophys. J. 345, L51–L54.

    Article  ADS  Google Scholar 

  69. Lattimer, J. M., Schramm, D. N., and Grossman, L. (1978) Condensation in supernova ejecta and isotopic anomalies in meteorites. Astrophys. J. 219, 230–249.

    Article  ADS  Google Scholar 

  70. Lewis, R. S., Tang, M., Wacker, J. F, Anders, E., and Steel, E. (1987) Interstellar diamonds in meteorites, Nature 326, 160–162.

    Article  ADS  Google Scholar 

  71. Lewis, R. S., Anders, E., and Draine, B. T. (1989) Properties, detectability and origin of interstellar diamonds in meteorites Nature 339, 117–121.

    Article  ADS  Google Scholar 

  72. Little-Marenin, I.R. and Price, S. D. (1986) The shapes of circumstellar “silicate” features. In: D.J. Hollenbach and H.A. Thronson (eds.), Summer School on Interstellar Processes, NASA Tech. Memo. 88342, pp. 137–138

    Google Scholar 

  73. Little-Marenin, I. R., and Little, S. J. (1988) Emission features in IRAS low-resolution spectra of MS, S, and SC stars, Astrophys. J. 333, 305–315.

    Article  ADS  Google Scholar 

  74. Little-Marenin, I. R., and Little, S. J. (1990) Emission features in IRAS LRS spectra of M Mira variables, Astron. J. 99, 1173–1186.

    Article  ADS  Google Scholar 

  75. MacPherson, G. J., Wark, D. A., and Armstrong, J. T. (1988) Primitive Material surviving im chondrites: Refractory inclusions, in J. F. Kerridge and M. S. Matthews (eds.), Meteorites and the Early Solar System, Univ. of Arizona Press, Tucson, pp. 746–807.

    Google Scholar 

  76. Matthes, S. (1990) Mineralogie, 3rd edition, Springer-Verlag, Berlin.

    Google Scholar 

  77. McDonnell, J.A.M. (1988) Solar system dust as a guide to interstellar matter, in M.E. Bailey and D.A. Williams (eds.), Dust in the Universe, Cambridge University Press, Cambridge, pp. 169–181.

    Google Scholar 

  78. Merrill, K.M., and Stein, W.A. (1976) 2–14 µm stellar spectrophotometry. I. Stars of the conventional spectral sequence, Publ. Astron. Soc. Pacific 88, 285–293; II. Stars from the 2 µm Infrared Sky Survey, Publ. Astron. Soc. Pacific 88, 293–307.

    Article  ADS  Google Scholar 

  79. Molster, F.W. 1997, personal communication.

    Google Scholar 

  80. Mutschke, H., Begemann, B., Dorschner, J., and Henning, Th. (1994) Infrared data of sulphides of interstellar dust importance, Infrared Phys. Technol. 35, 361–374.

    Article  ADS  Google Scholar 

  81. Mutschke, H., Dorschner, J., Henning, Th., Jäger, C., and Ott, U. (1995) Facts and artifacts in interstellar diamond spectra, Astrophys. J. 454, L157–L160.

    Article  ADS  Google Scholar 

  82. Mutschke, H., Begemann, B., Dorschner, J., and Henning, Th. (1997) Steps toward interstellar silicate mineralogy. III. The role of aluminium in Stardust silicates. Submitted to Astron. Astrophys.

    Google Scholar 

  83. Ney E.P. (1977) Star dust Science 195, 541–546.

    Article  ADS  Google Scholar 

  84. Nistor, L. C, Van Landuyt, J., Ralchenko, V. G., Kononenko, T. V., Obraztsova, E. D., and Strelnitsky, V. E. (1994) Direct observations of laser-induced crystallization of a-C:H films. Appl. Phys. A 58, 137–144.

    ADS  Google Scholar 

  85. Nittler, L., Alexander, C. M. O’D., Gao, X., Walker R. M., and Zinner E. (1995a) Oxygen-rich stardust in meteorites, in M. Busso, R. Gallino, and C. M. Raiteri (eds.), Nuclei in the Cosmos: 3rd International Symposium on Nuclear Astrophysics, AIP Conf. Proc. No. 327, New York, pp. 585–589.

    Google Scholar 

  86. Nittler, L. R., Hoppe, P., Alexander, C. M. O’D., Amari, S., Eberhardt, P., Gao, X., Lewis, R. S., Strebel, R., Walker, R. M., and Zinner, E. (1995b), Silicon nitride from supernovae, Astrophys. J. 453, L25–L28.

    Article  ADS  Google Scholar 

  87. Nuth III, J.A. (1996) Grain formation and metamorphism, in J.M. Greenberg (ed.), The Cosmic Dust Connection, NATO ASI Ser. C, Vol. 487, Kluwer Academic Publisher, pp. 205–221.

    Google Scholar 

  88. Nuth III, J. A., and Hecht, J. H. (1990) Signatures of aging silicate dust, Astrophys. Space Sci. 163, 79–94.

    Article  ADS  Google Scholar 

  89. Nuth, J.A. and Donn, B. (1983) Laboratory studies of the condensation and properties of amorphous silicate smokes, J. Geophys. Res. 88Suppl., A847–A852.

    Article  ADS  Google Scholar 

  90. Nuth, J. A., Moseley, S. H., Silverberg, R. F., Goebel, J. H., and Moore, W. H. (1985) Laboratory infrared spectra of predicted condensates in carbon-rich stars, Astrophys. J. 290, L41–L43.

    Article  ADS  Google Scholar 

  91. Olnon, F. M., Raimond, E. (eds.), Neugebauer, G., van Duinen, R.J., Habing, H.J. et al. (1986) IRAS catalogues and atlases. Atlas of low-resolution spectra, Astron. Astrophys. Suppl. Ser. 65, 607–1065.

    Google Scholar 

  92. Omont, A. (1993) Circumstellar matter: Cool IRAS sources. in S. Kwok (ed.), Astronomical Infrared Spectroscopy: Future Observational Directions, A.S.P. Conf. Ser. 41, San Francisco, pp. 87–95.

    Google Scholar 

  93. Omont, A., Cox, P., Moseley, S. H., Glaccum, W., Casey, S., Forveille, T., Szczerba, R., and Chan, K.-W. (1995a) Mid-and far-infrared emission bands in C-rich proto-planetary nebulae, in M. R. Haas, J. A. Davidson, and E. F. Erickson (eds.), Airborne Astronomy Symposium: From Gas to Stars to Dust, A.S.P. Conf. Ser. 73, San Francisco, pp. 413–417.

    Google Scholar 

  94. Omont, A., Moseley, S. H., Cox, P., Glaccum, W., Casey, S., Forveille, T., Chan, K.-W., Szczerba, R., Loewenstein, R. F., Harvey, P. M., and Kwok, S. (1995b) The 30 micron emission band in carbon-rich pre-planetary nebulae, Astrophys. J. 454, 819–825.

    Article  ADS  Google Scholar 

  95. Onaka, T., de Jong, T., and Willems, F.J. (1989) A study of Mira variables based on IRAS LRS observations. I. Dust formation in the circumstellar shell, Astron. Asttrophys. 218, 169–179.

    ADS  Google Scholar 

  96. Ott, U. (1993) Interstellar grains in meteorites, Nature 364, 25–33.

    Article  ADS  Google Scholar 

  97. Palik, E. D. (1985) Handbook of Optical Constants of Solids, Academic Press, Orlando, pp. 587–595.

    Google Scholar 

  98. Palme, H., and Beer, H. (1993) Abundances of elements in the solar system. Landolt-Börnstein (New Series), Group VI, Vol. 3, Subvolume A, pp. 196–221.

    Article  Google Scholar 

  99. Rietmeijer, F. J. M. (1992) Nonequilibrium iron oxide formation in some low-mass post-asymptotic giant branch stars, Astrophys. J. Lett. 400, L39–L41.

    Article  ADS  Google Scholar 

  100. Rietmeijer, F.J.M., Nuth, J.A., and Mackinnon., I.D.R. (1986) Analytical electron microscopy of Mg-SiO smokes: a comparison with infrared and XRD studies, Icarus 66, 211–222.

    Article  ADS  Google Scholar 

  101. Russell, R.W., Chatelain, M.A., Hecht, J.H., and Stephens, J.R. (1989) Si3N4 emis-sivity and the unidentified infrared bands, in A.G.G.M. Tielens and L.J. Allamandola (eds.) Interstellar Dust: Contributed Papers, NASA CP-3036, pp. 157–162.

    Google Scholar 

  102. Saslaw, W. C. and Gaustad, J. E. (1969) Interstellar dust and diamonds, Nature 221, 160–162.

    Article  ADS  Google Scholar 

  103. Schulze, H., 1992: Untersuchungen zur stofflichen Charakterisierung der Staubkomponente des Kometen P/Halley auf der Grundlage von Staubimpakt-Massenspektren, Ph. D.-Thesis, Humboldt-Universität Berlin

    Google Scholar 

  104. Schulze, H., Kissel, J., and Jessberger, E.K. 1997 Chemical heterogeneity of the dust particles of comet P/Halley and hints to their mineralogy, in Y.Pendleton and A.G.G.M.Tielens From Stardust to Planetesimals: Review Papers, ASP Conf. Ser., San Francisco, in press.

    Google Scholar 

  105. Sedlmayr, E. (1989) Dust condensation in stellar outflows, in L. J. Allamandola and A. G. G. M. Tielens (eds.), Interstellar Dust, Proc. IAU Symp. 135, Kluwer Academic Publishers, Dordrecht, pp. 467–477.

    Chapter  Google Scholar 

  106. Sellgren, K. (1990) The infrared interstellar emission features, in E. Bussoletti and A. A. Vittone (eds.), Dusty Objects in the Universe Kluwer Academic Publisher, Dordrecht, pp. 35–47.

    Chapter  Google Scholar 

  107. Shroder, R.E., Nemanich, R.J., and Glass, J. T. (1990) Analysis of the composite structures in diamond thin films by Raman spectroscopy. Phys. Rev. B 41, 3738–3745.

    ADS  Google Scholar 

  108. Simpson, J.P. (1991) IRAS low-resolution spectral observations of the 10 and 18 micron silicate emission features, Astrophys. J. 368, 570–579.

    Article  ADS  Google Scholar 

  109. Sloan, G.C., and Price, S.D. (1995) Silicate emission at 10 microns in variables on the asymptotic giant branch, Astrophys. J. 451, 758–767.

    Article  ADS  Google Scholar 

  110. Sloan, G.C., LeVan, P.D., and Little-Marenin, I.R. (1996) Sources of the 13 micron feature associated with oxygen-rich circumstellar dust, Astrophys. J. 463, 310–319.

    Article  ADS  Google Scholar 

  111. Speck, A. K., Barlow, M. J., and Skinner, C.J. (1997) The nature of silicon carbide in star outflows, Monthly Not. R. Astron. Soc. in press.

    Google Scholar 

  112. Tang, M. and Anders, E. (1988) Isotopic anomalies of Ne, Xe, and C in meteorites. II. Interstellar diamond and SiC: Carriers of exotic noble gases, Geochim. Cosmochim. Acta 52, 1235–1244.

    Article  ADS  Google Scholar 

  113. Treffers, R. and Cohen, M. (1974) High-resolution spectra of cool stars in the 10-and 20-micron region Astrophys. J. 188, 545–552.

    Article  ADS  Google Scholar 

  114. Waters, L. B. F. M., Molster, F. J., de Jong, T., et al. (1996) Mineralogy of oxygen-rich dust shells, Astron. Astrophys. 315, L361–L364.

    ADS  Google Scholar 

  115. Whittet, D. C. B., Duley, W. W., and Martin, P. C. (1990) On the abundance of silicon carbide dust in the interstellar medium, Mon. Not. Roy. Astron. Soc. 244, 427–431.

    ADS  Google Scholar 

  116. Wildt, R. (1933) Kondensation in Sternatmosphären Zeitschr. f. Astrophys. 6, 345–354.

    Google Scholar 

  117. Woolf, N. J. (1973) Circumstellar infrared emission, in J. M. Greenberg and H. C. van de Hulst (eds.), Interstellar Dust and Related Topics, Reidel, Dordrecht, pp. 485–504.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dorschner, J. (1999). Stardust Mineralogy. In: Greenberg, J.M., Li, A. (eds) Formation and Evolution of Solids in Space. NATO ASI Series, vol 523. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4806-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4806-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6018-9

  • Online ISBN: 978-94-011-4806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics