Skip to main content

Smooth variational principles and non-smooth analysis in Banach spaces

  • Chapter
Nonlinear Analysis, Differential Equations and Control

Part of the book series: NATO Science Series ((ASIC,volume 528))

Abstract

We first present some examples of Hamilton-Jacobi equations in infinite dimensions, we solve formally these equations and we see that in all examples presented, “solutions” are not smooth. We also present minimization problems without compactness. Variational principles are efficient tools to deal with these minimization problems. We then show how the smooth variational principle of R. Deville, G. Godefroy and V. Zizler allows to develop a differential calculus for non-smooth functions in smooth Banach spaces. This calculus is then applied to the resolution of Hamilton-Jacobi equations in infinite dimensions: we prove that in smooth Banach spaces, this calculus yields uniqueness results of viscosity solutions of Hamilton-Jacobi equations. We also present the key facts for the resolution of second order fully non-linear partial differential equations. Several open problems connected with the content of these lectures will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACL] Aussel, D., Corvellec, J. N. and Lassende, M., Non-smooth constrained optimization and multidirectional mean value inequalities, preprint.

    Google Scholar 

  2. Barles, G., Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques et applications 17, Springer-Verlag, Berlin-Heidelberg, 1994.

    Google Scholar 

  3. Borwein, J. M. and Preiss, D., A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, linns. Amer. Math. Soc. 303 (1987), 517–527.

    Article  MathSciNet  MATH  Google Scholar 

  4. Borwein, J. M. and Zhu, Q., Viscosity solutions and viscosity subderivatives in smooth Banach spaces with applications to metric regularity, SIAM J. Control Optim. 34 (1996), 1568–1591.

    Article  MathSciNet  MATH  Google Scholar 

  5. C] Cepedello, M., Approximation of Lipschitz functions by △-convex functions in Banach spaces, preprint.

    Google Scholar 

  6. Christensen, J. P. R., On sets of Haar measure zero in Abelian Polish groups, Israel J. Math. 13 (1972), 255–260.

    Article  MathSciNet  Google Scholar 

  7. Clarke, F.H., Ledyaev, Yu. S., Wolenski, P.R., Proximal analysis and minimization principles, J. Math. Anal. Appl. 196 (2) (1995), 722–735.

    Google Scholar 

  8. Clarke, F.H., Ledyaev, Yu. S., Stern, R. J., Wolenski, P.R., Nonsmooth Analysis and Control Theory, Graduate Texts in Math. 178, Springer Verlag, New York, 1998.

    Google Scholar 

  9. Crandall, M. G., Kocan, M. and Swiech, A., On partial sup-convolutions, a lemma of P.-L. Lions and viscosity solutions in Hilbert spaces, Adv. Math. Sci. Appl. 3 (1994) (spec. issue), 1–15.

    MathSciNet  MATH  Google Scholar 

  10. Crandall, M. G., Ishii, H. and Lions, P.-L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992) 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  11. Crandall, M. G. and Lions, P.-L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  12. Crandall, M. G. and Lions, P.-L., Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. Part I: Uniqueness of viscosity solutions, 62 (1985), 379-396; Part II: Existence of viscosity solutions, 65 (1986), 368–405; Part III 68 (1986), 214-247; Part IV: Unbounded linear terms, 90 (1990), 237–283; Part V: B-continuous solutions, 97 (1991), 417–465; Part VII: The HJB equation is not always satisfied 125 (1994), 111–148.

    MathSciNet  MATH  Google Scholar 

  13. Crandall, M. G. and Lions, P.-L., Hamilton-Jacobi equations in infinite dimensions. VT: Nonlinear A and Tataru’s method refined, in: Evolution Equations, Control Theory and Biomathematics (P. Clément and G. Lumer, eds.), Lecture Notes in Pure and Appl. Math. 155, Dekker, New York 1994, 51–89.

    Google Scholar 

  14. Deville, R., A mean value theorem for non differentiable mappings, Serdica Math. J. 21 (1995), 59–66.

    MathSciNet  Google Scholar 

  15. D2] Deville, R., Stability of subdifferentials of nonconvex functions in Banach spaces, Set-Valued Anal. 2 (1994) 141–157 (H. Attouch and M. Thera, eds.).

    Google Scholar 

  16. DH1] Deville, R. and El Haddad, E. M., The subdifferential of the sum of two functions in Banach spaces, I. First order case, J. Convex Anal. 3 (2) (1996), 295–308..

    Google Scholar 

  17. Deville, R. and El Haddad, E. M., The subdifferential of the sum of two functions in Banach spaces, I. Second order case, Bull. Austral. Math. Soc. 51 (1995), 235–248.

    Article  MathSciNet  MATH  Google Scholar 

  18. Deville, R., Godefroy G. and Zizler V., A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions, J. Funct. Anal. 111 (1993), 197–212.

    Article  MathSciNet  MATH  Google Scholar 

  19. Deville, R., Godefroy G. and Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys Pure Appl. Math. 64, Longman Sci. Tech., 1993.

    Google Scholar 

  20. Deville, R. and Ivanov, M., Smooth variational principle with constraints, Math. Nachr. 69 (1997) 418–426.

    MathSciNet  MATH  Google Scholar 

  21. DI2] Deville, R. and Ivanov, M., Second order subdifferentials and regularity of functions on Banach spaces, to appear in Math. Nachr.

    Google Scholar 

  22. Deville, R. and Azagra, D., Subdifferential Rolle’s and mean value inequality theorems, Bull. Austral. Math. Soc. 56 (1997), 319–329.

    Article  MathSciNet  MATH  Google Scholar 

  23. DR] Deville, R. and Revalski, J., Porosity of ill-posed problems, to appear in Proc. Amer. Math. Soc.

    Google Scholar 

  24. DGJ] Deville, R., Gonzalo, R. and Jaramillo, J., Renormings of L p(L q), to appear in Math. Proc. Cambridge Philos. Soc.

    Google Scholar 

  25. Ekeland, I., Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443–474.

    Article  MathSciNet  MATH  Google Scholar 

  26. Evans, L. C., Some min-max methods for the Hamilton-Jacobi equation, Indiana Univ. Math. J. 33 (1984), 31–50.

    Article  MathSciNet  MATH  Google Scholar 

  27. Fabian, M., Subdifferentials, local ε-supports and Asplimd spaces, J. London Math. Soc. 34 (1986), 568–576.

    Article  MathSciNet  MATH  Google Scholar 

  28. Fabian, M., Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss, Acta Univ. Carolin. Math. Phys. 30 (1989), 51–56.

    MathSciNet  MATH  Google Scholar 

  29. Fabian, M., Hajek, P. and Vanderwerff, J., On smooth variational principles in Banach spaces, J. Math. Anal. Appl. 197 (1) (1996), 153–172.

    Article  MathSciNet  MATH  Google Scholar 

  30. Fitzpatrick, S., Differentiation of real-valued functions and continuity of metric projections, Proc. Amer. Math. Soc. 91 (1984), 544–548.

    Article  MathSciNet  MATH  Google Scholar 

  31. Frankowska, H., On the single-valuedness of Hamilton-Jacobi operators, Nonlinear Anal. 10 (1986), 1477–1483.

    Article  MathSciNet  MATH  Google Scholar 

  32. Haydon, R. G., A counterexample to several questions about scattered compact spaces, Bull. London Math. Soc. 22 (1990), 261–268.

    Article  MathSciNet  MATH  Google Scholar 

  33. H2] Haydon, R. G., Trees and renorming theory, to appear.

    Google Scholar 

  34. Haydon, R. G., Normes infiniment differentiables sur certains espaces de Banach, C. R. Acad. Sci Paris Sér. I Math. 315 (1992), 1175–1178.

    MathSciNet  MATH  Google Scholar 

  35. Ioffe, A. D., On subdifferentiability spaces, Ann. New York Acad. Sci. 410 (1983), 107–119.

    Article  MathSciNet  Google Scholar 

  36. Jensen, R., The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mexh. Anal. 101 (1988), 1–27.

    Article  MATH  Google Scholar 

  37. L] Lassonde, M., First order rules for nonsmooth constrained optimization, preprint.

    Google Scholar 

  38. Preiss, D., Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), 312–345.

    Article  MathSciNet  MATH  Google Scholar 

  39. Stegall, C., Optimization of functions on certain subsets of Banach spaces, Math. Ann. 236 (1978), 171–176.

    Article  MathSciNet  MATH  Google Scholar 

  40. Vanderwerff, J. and Zhu, Q., A limiting example for the local “fuzzy” sum rule in non-smooth analysis, Proc. Amer. Math. Soc. 126 (1998), 2691–2697.

    Article  MathSciNet  MATH  Google Scholar 

  41. Z] Zajfcek, L., Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), 314–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Deville, R. (1999). Smooth variational principles and non-smooth analysis in Banach spaces. In: Clarke, F.H., Stern, R.J., Sabidussi, G. (eds) Nonlinear Analysis, Differential Equations and Control. NATO Science Series, vol 528. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4560-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4560-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5666-0

  • Online ISBN: 978-94-011-4560-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics