Skip to main content

The Pathological Consequences and Evolutionary Implications of Recent Human Genomic Duplications

  • Chapter
Comparative Genomics

Part of the book series: Computational Biology ((COBO,volume 1))

Abstract

Sequence duplications are one of the primary forces by which genes and genomes evolve. The evolutionary effects occur through a variety of different avenues. Gene duplications, either tandem or dispersed, create families of related genes. Extra copies of a gene can subtly influence the fitness of an organism, imparting a slight but important selective advantage over those lacking the duplication (Cooke et al., 1997; Shimeld, 1999). Also, a redundant copy exists in a state of relaxed selective constraint. This increases the chance that otherwise deleterious mutations will persist in an evolving genome, potentially acquiring new genic function outside the confines of the original function (Ganfornina and Sanchez, 1999). In this manner, individual family members can gain developmentally, spatially, or temporally modified functions independent of the ancestral copy. The most well-studied example of such an effect is the globin family of proteins (Stamatoyannopoulos and Nienhuis, 1994). Multiple globin isoforms are found in the mammalian genome, but each has a developmentally limited period of expression. In addition to generating genes with new or modified function, duplication events may also be used to increase copy number, thereby increasing the dosage of a particular protein or RNA product. The concerted evolution of rRNA genes clusters has long been thought of in this regard (Ganfornina and Sanchez, 1999). Duplications also increase genomic diversity, affording an organism a greater capacity to interact with its environment. Mutations within duplicate copies may occur which facilitate and fine-tune molecular interaction with a diverse repertoire of xenobiotic molecules. Such interactions may confer clear selective advantages to an organism and increase the number of niches that evolving species may occupy. Within the mammalian genome, olfactory receptor and immunoglobulin gene families are examples of such classes of genes that have evolved to recognize a diverse array of odorant molecules and antigens, respectively (Lancet et al., 1993; Kasahara, 1997; Marchalonis et al., 1998; Litman et al., 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., et al. 2000. The genome sequence of Drosophila melanogaster. Science 287:2185–2195.

    Article  PubMed  Google Scholar 

  • Amos-Landgraf, J. M., Ji, Y., Gottlieb, W., Depinet, T., Wandstrat, A. E., et al. 1999. Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints. American Journal of Human Genetics 65:370–386.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, N., Wienberg, J., Ermert, K., and Zachau, H. G. 1995. Comparative mapping of DNA probes derived from the V kappa immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization. Genomics 26:147–150.

    Article  PubMed  CAS  Google Scholar 

  • Borden, P., Jaenichen, R., and Zachau, H. G. 1990. Structural features of transposed human VK genes and implications for the mechanism of their transpositions. Nucleic Acids Research 18:2101–2107.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, S., Lawson, D., Basham, D., Brown, D., Chillingworth, T., et al. 1999. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature 400:532–538.

    Article  PubMed  CAS  Google Scholar 

  • Brand-Arpon, V., Rouquier, S., Massa, H., De Jong, P. J., Ferraz, C., et al. 1999. A genomic region encompassing a cluster of olfactory receptor genes and a myosin light chain kinase (MYLK)gene is duplicated on human chromosome regions 3ql3-q21 and 3pl3. Genomics 56:98–110.

    Article  PubMed  CAS  Google Scholar 

  • Budarf, M. L. and Emanuel, B. S. 1997. Progress in the autosomal segmental aneusomy syndromes (SASs): single or multi-locus disorders? Human Molecular Genetics 6:1657–1665.

    Article  PubMed  CAS  Google Scholar 

  • Chen, K. S., Manian, P., Koeuth, T., Potocki, L., Zhao, Q., et al. 1997. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nature Genetics 17:154–163.

    Article  PubMed  CAS  Google Scholar 

  • Christian, S. L., Fantesa, J. A., Mewborn, S. K., Huang, B., and Ledbet-Ter., D.H. 1999. Large genomic duplicons map to sites of instability in the Prader-Willi/Angelman syndrome chromosome region (15qll-ql3). Human Molecular Genetics 8:1025–1037.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, J., Nowak, M. A., Boerlijst, M., and Maynard-Smith, J. 1997. Evolutionary origins and maintenance of redundant gene expression during metazoan development. Trends in Genetics 13:360–364.

    Article  PubMed  CAS  Google Scholar 

  • Csink, A. K. and Henikoff, S. 1998. Something from nothing: the evolution and utility of satellite repeats. Trends in Genetics 14:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Dunham, I., Shimizu, N., Roe, B. A., Chissoe, S., Hunt, A. R., Collins, J. E., Bruskiewich, R., Beare, D. M., Clamp, M., Smink, L. J., Ainscough, R., Almeida, J. P., Babbage, A., Bagguley, C., Bailey, J., K., B., Bates, K. N., Beasley, O., Bird, C. P., Blakey, S., Bridgeman, A. M., Buck, D., Burgess, J., Burrill, W. D., O’Brien, K. P., et al. 1999. The DNA sequence of human chromosome 22. Nature 402:489–495.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G. M. and Gally, J. A. 1970. Arrangement and Evolution of Eukaryotic Genes, pp. 962–972. In Second Study Program. Neurosciences.

    Google Scholar 

  • Edelmann, L., Pandita, R. K., and Morrow, B. E. 1999a. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. American Journal of Human Genetics 64:1076–1086.

    Article  PubMed  CAS  Google Scholar 

  • Edelmann, L., Pandita, R. K., Spiteri, E., Funke, B., Goldberg, R., et al. 1999b. A common molecular basis for rearrangement disorders on chromosome 22qll. Human Molecular Genetics 8:1157–1167.

    Article  PubMed  CAS  Google Scholar 

  • Eichler, E. E. 1998. Masquerading repeats: paralogous pitfalls of the human genome. Genome Research 8:758–762.

    PubMed  CAS  Google Scholar 

  • Eichler, E. E. 1999. Repetitive conundrums of centromere structure and function. Human Molecular Genetics 8:151–155.

    Article  PubMed  CAS  Google Scholar 

  • Eichler, E. E., Archidiacono, N., and Rocchi, M. 1999. CAGGG repeats and the pericentromeric duplication of the hominoid genome. Genome Research 9:1048–1058.

    Article  PubMed  CAS  Google Scholar 

  • Eichler, E. E., Budarf, M. L., Rocchi, M., Deaven, L. L., Doggett, N. A., et al. 1997. Interchromosomal duplications of the adrenoleukodystrophy locus: a phenomenon of pericentromeric plasticity. Human Molecular Genetics 6:991–1002.

    Article  PubMed  CAS  Google Scholar 

  • Eichler, E. E., Hoffman, S. M., Adamson, A. A., Gordon, L. A., Mccready, P., et al. 1998. Complex beta-satellite repeat structures and the expansion of the zinc finger gene cluster in 19pl2. Genome Research 8:791–808.

    PubMed  CAS  Google Scholar 

  • Eichler, E. E., Lu, F., Shen, Y., Antonacci, R., Jurecic, V., et al. 1996. Duplication of a gene-rich cluster between 16p11.l and Xq28: a novel pericentromeric-directed mechanism for paralogous genome evolution. Human Molecular Genetics 5:899–912.

    Article  PubMed  CAS  Google Scholar 

  • Endo, T., Imanishi, T., Gojobori, T., and Inoko, H. 1997. Evolutionary significance of intra-genome duplications on human chromosomes. Gene 205:19–27.

    Article  PubMed  CAS  Google Scholar 

  • Francke, U. 1999. Williams-Beuren syndrome: genes and mechanisms. Human Molecular Genetics 8:1947–1954.

    Article  PubMed  CAS  Google Scholar 

  • Ganfornina, M. D. and Sanchez, D. 1999. Generation of evolutionary novelty by functional shift. BioEssays 21:432–439.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, M. J., Tettelin, H., Carucci, D. J., Cummings, L. M., Aravind, L., et al. 1998. Chromosome 2 sequence of the human malaria parasite plasmodium falciparum. Science 282:1126–1132. Published erratum appears in Science 282:1827.

    Article  PubMed  CAS  Google Scholar 

  • Goffeau, A. et al. 1997. The yeast genome directory. Nature 387:5.

    CAS  Google Scholar 

  • Horvath, J. E., Viggiano, L., Loftus, B. J., Adams, M. D., Archidiacono, N., et al. 2000. Molecular structure and evolution of an alpha satellite/non-alpha satellite junction at 16pll. Human Molecular Genetics 9:113–123.

    Article  PubMed  CAS  Google Scholar 

  • Horvath, J. E., S. S. and Eichler, E. E. 2000. The mosaic structure of human pericentromeric DNA: a strategy for characterizing complex regions of the human genome. Genome Research in press.

    Google Scholar 

  • Hughes, A. L. 1999. Concerted evolution of exons and introns in the MHC-linked tenascin-X gene of mammals. Molecular Biology and Evolution 16:1558–1567.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, G. S., Krahe, R., Goodwin, L. A., Doggett, N. A., Siciliano, M. J., et al. 1996. Identification of a testis-expressed creatine transporter gene at 16pll.2 and confirmation of the X-linked locus to Xq28. Genomics 34:143–146.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M. S., Rocchi, M., Thompson, G., Hearn, T., Crosier, M., et al. 1999. Sequences flanking the centromere of human chromosome 10 are a complex patchwork of arm-specific sequences, stable duplications and unstable sequences with homologies to telomeric and other centromeric locations. Human Molecular Genetics 8:205–215.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M. S., See, G. G., Mulligan, L. M., and Lauffart, B. F. 1996. A 9.75-Mb map across the centromere of human chromosome 10. Genomics 33:258–270.

    Article  PubMed  CAS  Google Scholar 

  • Ji, Y., Eichler, E. E., Schwartz, S., and Nicholls, R. D. 2000a. Structure of chromosomal duplicons and their road in mediating human genomic disorders. Genome Research in press.

    Google Scholar 

  • Ji, Y., Rebert, N. A., Joslin, J. M., Higgins, M. J., Schultz, R. A., et al. 2000b. Structure of the highly conserved HERC2 gene and of multiple partially duplicated paralogs in human. Genome Research 10:319–329.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara, M. 1997. New insights into the genomic organization and origin of the major histocompatibility complex: role of chromosomal (genome) duplication in the emergence of the adaptive immune system. Hereditas 127:59–65.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara, M. Hayashi, M., Tanaka, K., Inoko, H., Sugaya, K., Ikemura, T., and Ishibashi, T. 1996. Chromosomal localization of the proteasome z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proceedings of the National Academy of Sciences USA 93:9096–9101.

    Article  CAS  Google Scholar 

  • Keller, M. P., Seifried, B. A., and Chance, P. F. 1999. Molecular evolution of the CMT1A-REP region: a human-and chimpanzee-specific repeat. Molecular Biology and Evolution 18:1019–1026.

    Article  Google Scholar 

  • Lancet, D., Ben-Arie, N., Cohen, S., U. Gat, R. G.-L., et al. 1993. Olfactory receptors: transduction, diversity, human psychophysics and genome analysis, pp. 131–141. In The Molecular Basis of Smell and Taste Transduction, volume 179 of CIBA Foundation Symposium. John Wiley & Sons, New York.

    Google Scholar 

  • Lin, X., Kaul, S., Rounsley, S., Shea, T., Benito, M., Town, C., Fujii, C., Mason, T., Bowman, C., Barnstead, M., Feldblyum, T., Buell, C., Ketchum, K., Lee, J., Ronning, C., Koo, H., Moffat, K., Cronin, L., Shen, M., Pai, G., Van Aken, S., Umayam, L., Tallon, L., Gill, J., Venter, J., et al. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768.

    Article  PubMed  CAS  Google Scholar 

  • Litman, G. W., Anderson, M. K., and Rast, J. P. 1999. Evolution of antigen binding receptors. Annual Review of Immunology 17:109–147.

    Article  PubMed  CAS  Google Scholar 

  • Lundin, L. G. 1993. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Marchalonis, J. J., Schlüter, S. F., Bernstein, R. M., Shen, S., and Edmund-Son, A.B. 1998. Phylogenetic emergence and molecular evolution of the immunoglobulin family. Advances in Immunology 70:417–506.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, K., Schuller, C., Wambutt, R., Murphy, G., Volckaert, G., et al. 1999. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402:769–777.

    Article  PubMed  CAS  Google Scholar 

  • Mazzarella, R. and Schlessinger, D. 1998. Pathological consequences of sequence duplications in the human genome. Genome Research 8:1007–1021.

    PubMed  CAS  Google Scholar 

  • Miklos, G. L. G. and Rubin, G. M. 1996. The role of the genome project in determining gene function: insight from model organisms. Cell 86:521–529.

    Article  PubMed  CAS  Google Scholar 

  • Muscatelli, F., Walker, A. P., De Plaen, E., Stafford, A. N., and Monaco, A. P. 1995. Isolation and characterization of a MAGE gene family in the Xp21.3 region. Proceedings of the National Academy of Sciences USA 92:4987–4991.

    Article  CAS  Google Scholar 

  • Nadeau, J. H. and Sankoff, D. 1997. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147:1259–1266.

    PubMed  CAS  Google Scholar 

  • Ohno, S. 1970. Evolution by Gene Duplication. Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Peoples, R., Franke, Y., Wang, Y. K., Perez-Jurado, L., Paperna, T., et al. 2000. A physical map, including a BAC/PAC clone contig, of the Williams-Beuren syndrome-deletion region at 7q11.23. American Journal of Human Genetics 51:47–68.

    Article  Google Scholar 

  • Potier, M., Dutriaux, A., Orti, R., Groet, J., Gibelin, N., et al. 1998. Two sequence-ready contigs spanning the two copies of a 200-kb duplication on human 21q: partial sequence and polymorphisms. Genomics 51:417–426.

    Article  PubMed  CAS  Google Scholar 

  • Régnier, V., Meddeb, M., Lecointre, G., Richard, F., Duverger, A., et al. 1997. Emergence and scattering of multiple neurofibromatosis (nfl)-related sequences during hominoid evolution suggest a process of pericentromeric interchromosomal transposition. Human Molecular Genetics 6:9–16.

    Article  PubMed  Google Scholar 

  • Reiter, L. T., Murakami, T., Koeuth, T., Gibbs, R. A., and Lupski, J. R. 1997. The human COX10 gene is disrupted during homologous recombination between the 24 kb proximal and distal CMTlA-REPs. Human Molecular Genetics 6:1595–1603.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, R. J., Mattei, M. G., and Lalande, M. 1998. A large polymorphic repeat in the pericentromeric region of human chromosome 15q contains three partial gene duplications. Human Molecular Genetics 7:1253–1260.

    Article  PubMed  CAS  Google Scholar 

  • Rouquier, S., Taviaux, S., Trask, B. J., Brand-Arpon, V., Van Den Engh, G., et al. 1998. Distribution of olfactory receptor genes in the human genome. Nature Genetics 18:243–250.

    Article  PubMed  CAS  Google Scholar 

  • Semple, C. and Wolfe, K. H. 1999. Gene duplication and gene conversion in the Caenorhabditis elegans genome. Journal of Molecular Evolution 48:555–556.

    Article  PubMed  CAS  Google Scholar 

  • Seoighe, C. and Wolfe, K. H. 1999. Updated map of duplicated regions in the yeast genome. Gene 238:253–261.

    Article  PubMed  CAS  Google Scholar 

  • Shaikh, T. H., Kurahashi, H., Saitta, S. C., O’hare, A. M., Hu, P., et al. 2000. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Human Molecular Genetics 9:489–501.

    Article  PubMed  CAS  Google Scholar 

  • Shimeld, S. M. 1999. Gene function, gene networks and the fate of duplicated genes. Seminars in Cell and Development Biology 10:549–553.

    Article  CAS  Google Scholar 

  • Sidow, A. 1996. Gen(om)e duplications in the evolution of early vertebrates. Current Opinion in Genetics and Development 6:715–722.

    Article  PubMed  CAS  Google Scholar 

  • Small, K., Iber, J., and Warren, S. T. 1997. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nature Genetics 16:96–99.

    Article  PubMed  CAS  Google Scholar 

  • Smith, G. P. 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191:528–535.

    Article  PubMed  CAS  Google Scholar 

  • Stamatoyannopoulos, J. A. and Nienhuis, A. W. 1994. Hemoglobin switching. In J. A. Stamatoyannopoulos, P. W. M. A. W. Nienhuis, J. A. S. H. Varmus, A. W. Nienhuis, P. W. Majerus, and H. Varmuss (eds.), The Molecular Basis of Blood Diseases, pp. 107–155. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Stubbs, L., Carver, E. A., Shannon, M., Kim, J., Geisler, J., et al. 1996. Detailed comparative map of human chromosome 19q and related regions of the mouse genome. Genomics 35:499–508.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X., Wahlstrom, J., and Karpen, G. 1997. Molecular structure of a functional Drosophila centromere. Cell 91:1007–1019.

    Article  PubMed  CAS  Google Scholar 

  • Teglund, S., Olsen, A., Khan, W. N., Frangsmyr, L., and Hammarstrom, S. 1994. The pregnancy-specific glycoprotein (PSG) gene cluster on human chromosome 19: fine structure of the 11 PSG genes and identification of 6 new genes forming a third subgroup within the carcinoembryonic antigen (CEA) family. Genomics 23:669–684.

    Article  PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018.

    Article  Google Scholar 

  • Trask, B. J., Friedman, C., Martin-Gallardo, A., Rowen, L., Akinbami, C., et al. 1998a. Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Human Molecular Genetics 7:13–26.

    Article  PubMed  CAS  Google Scholar 

  • Trask, B. J., Massa, H., Brand-Arpon, V., Chan, K., Friedman, C., et al. 1998b. Large multi-chromosomal duplications encompass many members of the olfactory receptor gene family in the human genome. Human Molecular Genetics 7:2007–2020.

    Article  PubMed  CAS  Google Scholar 

  • Van Deutekom, J. C., Lemmers, R. J., Grewal, P. K., Van Geel, M., Romberg, S., et al. 1996. Identification of the first gene (FRG1) from the FSHD region on human chromosome 4q35. Human Molecular Genetics 5:581–590.

    Article  PubMed  Google Scholar 

  • Van Geel, M., Heather, L. J., Lyle, R., Hewitt, J. E., Frants, R. R., et al. 1999. The FSHD region on human chromosome 4q35 contains potential coding regions among pseudogenes and a high density of repeat elements. Genomics 61:55–65.

    Article  PubMed  Google Scholar 

  • Wolfe, K. H. and Shields, D. C. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713.

    Article  PubMed  CAS  Google Scholar 

  • Wraith, A., Tornsten, A., Chardon, P., Harbitz, I., Chowdhary, B. P., et al. 2000. Evolution of the neuropeptide Y receptor family: gene and chromosome duplications deduced from the cloning and mapping of the five receptor subtype genes in Pig. Genome Research 10:302–310.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Q. and Maniatis, T. 2000. Large exons encoding multiple ectodomains are a characteristic feature of protocadherin genes. Proceedings of the National Academy of Sciences USA 97:3124–3129.

    Article  CAS  Google Scholar 

  • Zachau, H. G. 1993. The immunoglobulin kappa locus-or-what has been learned from looking closely at one-tenth of a percent of the human genome. Gene 135:167–173.

    Article  PubMed  CAS  Google Scholar 

  • Zimonjic, D. B., Kelley, M. J., Rubin, J. S., Aaronson, S. A., and Popescu, N. C. 1997. Fluorescence in situ hybridization analysis of keratinocyte growth factor gene amplification and dispersion in evolution of great apes and humans. Proceedings of the National Academy of Sciences USA 94:11461–11465.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

O’Keefe, C., Eichler, E. (2000). The Pathological Consequences and Evolutionary Implications of Recent Human Genomic Duplications. In: Sankoff, D., Nadeau, J.H. (eds) Comparative Genomics. Computational Biology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4309-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4309-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6584-6

  • Online ISBN: 978-94-011-4309-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics