Skip to main content

Genetree: A Tool for Exploring Gene Family Evolution

  • Chapter
Comparative Genomics

Part of the book series: Computational Biology ((COBO,volume 1))

Abstract

Molecular biologists interested in the evolution of gene families and molecular systematists interested in the evolution of whole organisms are both concerned with the relationship between gene phylogenies and organism phy-logenies. We present reconciled trees as a tool for exploring this relationship. In discussing recent developments, we focus on techniques which enable researchers to take account of uncertainty in the underlying gene phylogenies and to locate gene duplications and episodes of gene duplication on the species tree. Implementation of these methods should allow rapid, automated analysis of large sets of gene families and even of whole genomes, producing well supported organism phylogenies and allowing us to quantitatively investigate patterns of gene family evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Charleston, M. A. 1995. Towards a characterization of landscapes of combinatorial optimisation problems, with special reference to the phylogeny problem. Journal of Computational Biology 2:439–450.

    Article  PubMed  CAS  Google Scholar 

  • Charleston, M. A. 1998. Jungles: a new solution to the host/parasite phylogeny reconciliation problem. Mathematical Biosciences 149:191–223.

    Article  PubMed  CAS  Google Scholar 

  • Chen, K., Durand, D., and Farach-Colton, M. 2000. Notung: Dating gene duplications using gene family trees. In Proceedings of the Fourth Annual International Conference on Computational Molecular Biology (RECOMB 2000). ACM, New York.

    Google Scholar 

  • Constantinescu, M. and Sankoff, D. 1986. Tree enumeration modulo a consensus. Journal of Classification 3:349–356.

    Article  Google Scholar 

  • Downey, R. G. and Fellows, M. R. 1998. Parameterized Complexity. Springer.

    Google Scholar 

  • Duret, L., Mouchiroud, D., and Gouy, M. 1994. HOVERGEN: a database of homologous vertebrate genes. Nucleic Acids Research 22:2360–2365.

    Article  PubMed  CAS  Google Scholar 

  • Eulenstein, O. 1997. A linear time algorithm for tree mapping. Arbeitspapiere 1046, GDM.

    Google Scholar 

  • Fellows, M., Hallett, M., and Stege, U. 1998. On the multiple gene duplication problem, pp. 347–356. In Proceedings of the 9th International Symposium on Algorithms and Computation (ISAAC98), Taejon, Korea, volume 1533 of Lecture Notes in Computer Science. Springer, Berlin.

    Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791.

    Article  Google Scholar 

  • Fitch, W. M. 1979. Cautionary remarks on using gene expression events in parsimony procedures. Systematic Zoology 28:375–379.

    Article  Google Scholar 

  • Goodman, M., Czelusniak, J., Moore, G. W., Romero-Herrera, A. E., and Matsuda, G. 1979. Fitting the gene lineage into its species lineage: a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28:132–168.

    Article  CAS  Google Scholar 

  • Guigó, R., Muchnik, I., and Smith, T. F. 1996. Reconstruction of ancient molecular phylogeny. Molecular Phylogenetics and Evolution 6:189–213.

    Article  PubMed  Google Scholar 

  • Hallett, M. T. and Lagergren, J. 2000. New algorithms for the duplication-loss problem. In Proceedings of the Fourth Annual International Conference on Computational Molecular Biology (RECOMB 2000). ACM, New York.

    Google Scholar 

  • Holmes, R. S. 1972. Evolution of lactate dehydrogenase genes. FEBS Letters 28:51–55.

    Article  PubMed  CAS  Google Scholar 

  • Li, S. S.-L., Fitch, W. M., Pan, Y.-C. E., and Sharief, F. S. 1983. Evolutionary relationships of vertebrate lactate dehydrogenase isozymes A4 (muscle), B4 (heart), and C4 (testis). Journal of Biological Chemistry 258:7029–7032.

    PubMed  CAS  Google Scholar 

  • Ma, B., Li, M., and Zhang, L. 1998. On reconstructing species trees from gene trees in term of duplications and losses. In S. Istrail, P. A. Pevzner, and M. S. Waterman (eds.), Proceedings of the Second Annual International Conference on Computational Biology (RECOMB 98), pp. 182–191. ACM, New York.

    Chapter  Google Scholar 

  • Maddison, W. P. 1997. Gene trees in species trees. Systematic Biology 46:523–536.

    Article  Google Scholar 

  • Mallatt, J. and Sullivan, J. 1998. 28S and 18S rDNA sequences support the monophyly of lampreys and hagfishes. Molecular Biology and Evolution 15:1706–1718.

    Article  PubMed  CAS  Google Scholar 

  • Margush, T. and Mcmorris, F. R. 1981. Consensus n-trees. Bulletin of Mathematical Biology 43:239–244.

    Google Scholar 

  • Martin, A. 1999a. Choosing among alternative trees of multi-gene families. Molecular Phylogenetics and Evolution in press.

    Google Scholar 

  • Martin, A. P. 1999b. Increasing genomic complexity by gene duplication and the origin of the vertebrates. American Naturalist 154:111–128.

    Article  Google Scholar 

  • Martin, W. 1999C. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. BioEssays 21:99–104.

    Article  PubMed  CAS  Google Scholar 

  • Page, R. D. M. 1993. COMPONENT, Tree comparison software for Microsoft Windows. The Natural History Museum, London.

    Google Scholar 

  • Page, R. D. M. 1994. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43:58–77.

    Google Scholar 

  • Page, R. D. M. 1996. On consensus, confidence, and ‘total’ evidence. Cladistics 12:83–92.

    Google Scholar 

  • Page, R. D. M. 1998. GENETREE: comparing gene and species trees using reconciled trees. Bioinformatics 14:819–820.

    Article  PubMed  CAS  Google Scholar 

  • Page, R. D. M. 2000. Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. Molecular Phylogenetics and Evolution 14:89–106.

    Article  PubMed  CAS  Google Scholar 

  • Page, R. D. M. and Charleston, M. A. 1997. Reconciled trees and incongruent gene and species trees, pp. 57–70. In B. Mirkin, F. R. McMorris, F. S. Roberts, and A. Rzhetsky (eds.), Mathematical Hierarchies in Biology, volume 37 of DIM ACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Perrière, G., Duret, L., and Gouy, M. 2000. HOBACGEN: Database system for comparative genomics in bacteria. Genome Research 10:379–385.

    Article  PubMed  Google Scholar 

  • Sanderson, M. J. 1989. Confidence limits on phylogenies: The bootstrap revisisted. Cladistics 5:113–129.

    Article  Google Scholar 

  • Skrabanek, L. and Wolfe, K. H. 1998. Eukaryote genome duplication—where’s the evidence? Current Opinion in Genetics and Development 8:694–700.

    Article  PubMed  CAS  Google Scholar 

  • Slowinksi, J. and Page, R. D. M. 1999. How should species phylogenies be inferred from sequence data? Systematic Biology 48:814–825.

    Article  Google Scholar 

  • Stege, U. 1999. Gene trees and species trees: The gene-duplication problem is fixed-parameter tractable. Technical Report 319, Department of Computer Science, ETH Zurich.

    Google Scholar 

  • Waterman, M. S. and Smith, T. F. 1978. On the similarity of dendrograms. Journal of Theoretical Biology 73:789–800.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Page, R.D.M., Cotton, J.A. (2000). Genetree: A Tool for Exploring Gene Family Evolution. In: Sankoff, D., Nadeau, J.H. (eds) Comparative Genomics. Computational Biology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4309-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4309-7_45

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6584-6

  • Online ISBN: 978-94-011-4309-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics