Skip to main content

Deformations of Finsler Metrics

  • Chapter
Finslerian Geometries

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 109))

Abstract

Let F n = (M, F) be a smooth Finsler space i.e. C manifold M and map F : TMR, (x, y) ↦ F(x, y). Here x = x i) are coordinates on M and (x, y) = (x i, y i) are coordinates on the tangent manifold TM projected on M by τ. The indices i, j, k, ... will run from 1 to n = dim M and the Einstein convention on summation is implied. The geometrical objects on TM whose local components change as on M i.e. ignoring their dependence on y, will be called Finsler objects as in [7] or d-objects as in [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anastasiei, M. and Shimada H. (to appear) The Beil Metrics Associated to a Finsler Space, Balkan Journal of Geometry and Its Applications.

    Google Scholar 

  2. Antonelli, P.L. and Hrimiuc D. (1996) A New Class of Spray Generating Lagrangians, in Lagrange and Finsler Geometry, Applications in Physics and Biology, P.L. Antonelli and R. Miron, eds., Kluwer, Dordrecht, 81–92.

    Google Scholar 

  3. Aubin, T. (1970) Métriques riemanniennes et courbure, J. Differential Geometry, 4, 383–424.

    MathSciNet  MATH  Google Scholar 

  4. Beil, R. G. (1989) New Class of Finsler Metrics, Int. Jour. Theor. Phys., 28, 659–667.

    Article  MathSciNet  MATH  Google Scholar 

  5. Beil, R.G. (1996) Finsler Geometry and a Unified Field Theory, Contemporary Math., 196, 265–271.

    Article  MathSciNet  Google Scholar 

  6. Kitayama M., (to appear) Generalized Finsler Spaces Admitting a Parallel Finsler Vector Field, Algebras, Groups and Geometries.

    Google Scholar 

  7. Matsumoto, M. (1986) Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha, Saikawa, Ōtsu.

    MATH  Google Scholar 

  8. Miron, R. and Anastasiei, M. (1994) The Geometry of Lagrange Spaces: Theory and Applications. Kluwer, Dordrecht.

    Book  MATH  Google Scholar 

  9. O’Neil, B. (1966) The Fundamental Equations of a Submersion, Michigan Math. J., 134, 459–469.

    Google Scholar 

  10. Sekizawa, M. (1991) Curvatures of Tangent Bundles with Cheeger-Gromoll Metric, Tokyo J. Math., 14(2), 407–417.

    Article  MathSciNet  MATH  Google Scholar 

  11. Udrişte, C. (1993) Completeness of Finsler Manifolds, Publ. Math. Debrecen, 42(1–2), 45–50.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anastasiei, M., Shimada, H. (2000). Deformations of Finsler Metrics. In: Antonelli, P.L. (eds) Finslerian Geometries. Fundamental Theories of Physics, vol 109. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4235-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4235-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5838-4

  • Online ISBN: 978-94-011-4235-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics