Skip to main content

A Carry Theorem for Rational Binomial Coefficients

  • Chapter
Applications of Fibonacci Numbers

Abstract

Ernst Eduard Kummer proved in 1852 that for any nonnegative integers j and k and any prime p, the exponent of the highest power of p that divides the binomial coefficient \( \begin{array}{*{20}{c}} {j + k} k \end{array} \) equals the number of carries that occur when j and k are added together in the p-ary number system. This elegant theorem has been an inspiration and a point of departure for many authors. For example, it has been generalized for i) multinomial coefficients [5], [11], [2]; ii) Gaussian or q-binomial coefficients [3], [4], [6]; iii) “Fibonomial” coefficients [8], [6]; and iv) regularly divisible C-nomial coefficients [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachman, G., Introduction p-adic Numbers Valuation Theory, Academic Press (1964).

    Google Scholar 

  2. Dodd, F. and Peele, R., “Some Counting Problems Involving the Multinomial Expansion.” Math. Mag. (to appear).

    Google Scholar 

  3. Fray, R., “Congruence Properties of Ordinary and q-Binomial Coefficients.” Duke Math. J. 34 (1967) pp. 467–480.

    Article  MathSciNet  MATH  Google Scholar 

  4. Howard, F. T., “Prime Divisors of q-Binomial Coefficients.” Rend. Sem. Mat. Univ. Padova(1973) pp. 181–188.

    Google Scholar 

  5. Howard, F. T., “The Number of Multinomial Coefficients Divisible by a Fixed Power of a Prime.” Pacific J. Math. 50 (1974) pp. 99–108.

    Article  MathSciNet  MATH  Google Scholar 

  6. Knuth, D. and Wilf, H., “The Power of a Prime that Divides a Generalized Binomial Coefficient.” J. Reine Angew. Math. 396 (1989) pp. 212–219.

    MathSciNet  MATH  Google Scholar 

  7. Kummer, E. E., “Über die Ergänzungßetze zu den Allgemeinen Reciprocitätsgesetzen.” J. für Math. 44 (1852) pp. 115–116.

    Google Scholar 

  8. Lucas, E. “Théorie des Fonctions Numériques Simplement Périodiques.” Amer. J. Math. 1 (1878) pp. 184–240.

    Article  MathSciNet  Google Scholar 

  9. Peele, R., “Divisibility Patterns for Some Combinatorial Sequences.” Proceedings of Combinatorics ‘88 (Ravello, May 1988) (to appear).

    Google Scholar 

  10. Peele, R. and Wilf, H., “Congruence Problems Involving Stirling Numbers of the First Kind.” (submitted).

    Google Scholar 

  11. Singmaster, D., “Divisibility of Binomial and Multinomial Coefficients by Primes and Prime Powers.” 18th Anniversary Volume of the Fibonacci Association (1980) pp. 98–113.

    Google Scholar 

  12. Stanley, R., Enumerative Combinatorics, Wadsworth & Brooks/Cole (1986).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Flath, D., Peele, R. (1991). A Carry Theorem for Rational Binomial Coefficients. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3586-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3586-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5590-1

  • Online ISBN: 978-94-011-3586-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics