Skip to main content

Biological Implications of Organic Compounds in Comets

  • Chapter
Comets in the Post-Halley Era

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 167))

Abstract

Organic chemicals — compounds that contain carbon — are the substance of life and pervade the universe. Is there a connection between comets, which are rich in prebiotic organics, and the origin of life? Current concepts of biomolecular evolution are first reviewed, including the important paradigm of catalytic RNA At the very least, impacting comets appear to have supplied a substantial fraction of the volatile elements required for life shortly after the Earth formed. Some impacting material may even have survived chemically intact to directly provide necessary complex prebiotic organic chemicals. For life to originate and evolve in comets themselves, liquid H2O would be absolutely required: arguments for and against 26A1 radiogenic melting of cometary cores are presented. Cometary panspermia, if theoretically possible, is not necessary to explain the origin of life on Earth. The Halley spacecraft provide evidence against Earth-type microorganisms in this comet’s dust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, V.K., Schutte, W., Greenberg J.M., et al. (1986). Photochemical reactions in interstellar grains: Photolysis of CO, NH3, and H2O. Origins Life 16, 21–40.

    ADS  Google Scholar 

  • Agol, V.I. (1976). An aspect of the origin and evolution of viruses. Origins Life 7, 119–132.

    Article  ADS  Google Scholar 

  • A’Hearn, M.F., Hoban, S., Birch, P.V., Bowers, C., Martin, R., and Klinglesmith, D.A. III (1986). Cyanogen jets in comet Halley. Nature 324, 649–651.

    Article  ADS  Google Scholar 

  • Allen, D.A., and Wickramasinghe, D.T. (1981). Diffuse interstellar absorption bands between 2.9 and 4.0µm. Nature 294, 239–240.

    Article  ADS  Google Scholar 

  • Amari, S., Anders, E., Virag, A., and Zinner, E. (1990). Interstellar graphite in meteorites. Nature 345, 238–240.

    Article  ADS  Google Scholar 

  • Anders, E. (1989). Pre-biotic organic matter from comets and asteroids. Nature 342, 255–257.

    Article  ADS  Google Scholar 

  • Arrhenius, S. (1903). In The Quest for Extraterrestrial Life, D. Goldsmith, ed., University Science Books, California, 1980, pp. 32–33 (transl. by D. Goldsmith from die Untschau 7, 481).

    Google Scholar 

  • Bada, J.L., Cronin, J.R., Ho, M-S., et al. (1983). Reported optical activity of amino acids in the Murchison meteorite. Nature 301, 494–496.

    Article  ADS  Google Scholar 

  • Bar-Nun, A., Lazcano-Araujo, A., and Oró, J. (1981). Could life have evolved in cometary nuclei? Origins Life 11, 387–394.

    Article  ADS  Google Scholar 

  • Bell, M.B., Feldman, P.A., Kwok, S., and Matthews, H.E. (1982). Detection of HC11N in IRC+10°216. Nature 295, 389–391.

    Article  ADS  Google Scholar 

  • Benner, S.A., Ellington, D.D., and Tauer, A. (1989). Modern metabolism as a palimpsest of the RNA world. Proc. Natl. Acad. Sci. U.S.A 86, 7054–7058.

    Article  ADS  Google Scholar 

  • Bernath, P.F., Hinkle, K.H., and Keady, J.J. (1989). Detection of C5 in the circumstellar shell of IRC+10216. Science 244, 562–564.

    Article  ADS  Google Scholar 

  • Berner, R.A., and Lasaga, A.C. (1989). Modeling the geochemical carbon cycle. Sci. Am. 260, 74–81.

    Article  ADS  Google Scholar 

  • Bockelée-Morvan, D., Depois, D., Paubert, G., Colom, P., and Crovisier, J. (1990). Comet Austin (1989c1). I.A.U. Circular 5020.

    Google Scholar 

  • Campbell, P. (1983). Infrared data debugged. Nature 306, 218–219.

    ADS  Google Scholar 

  • Carlin, R.K. (1980). Poly(A): A new evolutionary probe. J. Theoret. Biol. 82, 353–362.

    Article  Google Scholar 

  • Cech, T.R. (1986a). RNA as an enzyme. Sci. Am. 255(5), 64–75.

    Article  ADS  Google Scholar 

  • Cech, T.R. (1986b). A model for the RNA-catalyzed replication of RNA. Proc. Natl. Acad. Sci. USA 83, 4360–4363.

    Article  ADS  Google Scholar 

  • Chamberlin, T.C., and Chamberlin, R.T. (1908). Early terrestrial conditions that may have favored organic synthesis. Science 28, 897–911.

    Article  ADS  Google Scholar 

  • Chu, C.M. (1948). Inactivation of haemagglutinin and infectivity of influenza and Newcastle disease viruses by heat and by formalin. J. Hygiene 46, 247–251.

    Article  Google Scholar 

  • Chyba, C. (1987). The cometary contribution to the oceans of primitive earth. Nature 330, 632–635.

    Article  ADS  Google Scholar 

  • Chyba, C. (1990). Impact delivery and erosion of planetary oceans in the early inner Solar System. Nature 343, 129–133.

    Article  ADS  Google Scholar 

  • Chyba, C., and Sagan, C. (1987). Cometary organics but no evidence for bacteria. Nature 329, 208.

    Article  ADS  Google Scholar 

  • Chyba, C., and Sagan, C. (1989). The pre-and post-accretion irradiation history of cometary ice. In Interstellar Dust, A.G.G.M. Tielins, and L.J. Allamandola, eds., NASA Conference Publication 3036, pp. 433–435.

    Google Scholar 

  • Clark, B.C. (1988). Primeval procreative comet pond. Origins Life 18, 209–238

    Article  ADS  Google Scholar 

  • Claus, G., and Nagy, B. (1961). A microbiological examination of some carbonaceous chondrites. Nature 192, 594–596.

    Article  ADS  Google Scholar 

  • Combes, M., Moroz, V.I., Crovisier, J., et al. (1988). The 2.5-µm spectrum of comet Halley from the IKS-VEGA experiment. Icarus 76, 404–436.

    Article  ADS  Google Scholar 

  • Cosmovici, C.B., Schwarz, G., Ip, W.-H., and Mack, P. (1988). Gas and dust jets in the inner coma of comet Halley. Nature 332, 705–709.

    Article  ADS  Google Scholar 

  • Crick, F.H.C. (1968). The origin of the genetic code. J. Mol. Biol. 38, 367–379.

    Article  Google Scholar 

  • Cronin, J.R. (1989). Amino acids and bolide impacts. Nature 339, 423–424.

    Article  ADS  Google Scholar 

  • Cronin, J.R., Pizzarello, S., and Cruikshank, D.P. (1988). Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In Meteorites and the Early Solar System, J.F. Kerridge, and M.S. Matthews, eds., University of Arizona Press, Tucson, pp. 819–857.

    Google Scholar 

  • Cronin, J.R., Pizzarello, S., and Moore, C.B. (1979). Amino acids in an antarctic carbonaceous chondrite. Science 206, 335–337.

    Article  ADS  Google Scholar 

  • Deamer, D.W. (1985). Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317, 793–794.

    Article  ADS  Google Scholar 

  • Deamer, D.W., and Pashley, R.M. (1989). Amphiphilic components of the Murchison carbonaceous chondrite: Surface properties and membrane formation. Origins Life 19, 21–38.

    Article  Google Scholar 

  • Delsemme, A.H. (1981). Are comets connected to the origin of life? In Comets and the Origin of Life, C. Ponnamperuma, ed., D. Reidel Publ. Co., Dordrecht, Netherlands, pp. 141–159.

    Chapter  Google Scholar 

  • Delsemme, A. (1982). Chemical composition of cometary nuclei. In Comets, L.L. Wilkening, ed., University of Arizona Press, Tucson, pp. 85–130.

    Google Scholar 

  • Delsemme, A.H. (1984). The cometary connection with prebiotic chemistry. Origins Life 14, 51–60.

    Article  ADS  Google Scholar 

  • Delsemme, A.H. (1990). Organic compounds in comets: An astrophysical view. In Comets in the Post-Halley Era, R.L. Newburn, Jr., M. Neugebauer, and J. Rahe, eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.

    Google Scholar 

  • Donn, B. (1982). Comets: Chemistry and evolution. J. Mol. Evol. 18, 157–160

    Article  ADS  Google Scholar 

  • Doudna, J.A., and Szostak, J.W. (1989). RNA-catalyzed synthesis of complementary-strand RNA. Nature 339, 519–522.

    Article  ADS  Google Scholar 

  • Eberhardt, P., Krankowski, D., Schulte, W., et al. (1987). The CO and NH2 abundance in comet P/Halley. Astronomy Astrophys. 187, 481–484.

    ADS  Google Scholar 

  • Eigen, M., Lindemann, B., Tietze, M., Winkler-Oswatitsch, R., Dress, A., and von Haeseler, A. (1989). How old is the genetic code? Statistical geometry provides an answer. Science 244, 673–679.

    Article  ADS  Google Scholar 

  • Encrenaz, T., and Knacke, R. (1990). Carbonaceous compounds in comets. In Comets in the Post-Halley Era, R.L. Newburn, Jr., M. Neugebauer, and J. Rahe, eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.

    Google Scholar 

  • Epstein, S., Krishnamurphy, R.V., Cronin, J.R., Pizzarello, S., and Yuen, G.U. (1987). Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite. Nature 326, 477–479.

    Article  ADS  Google Scholar 

  • Fegley, B., Jr., Prinn, R.G., Hartman, H., and Watkins, G.H. (1986). Chemical effects of large impacts on the earth’s primitive atmosphere. Nature 319, 305–308.

    Article  ADS  Google Scholar 

  • Ferris, J.P. (1987). Prebiotic synthesis: Problems and challenges. Cold Spring Harbor Symp. Quant. Biol. 52, 29–35.

    Article  Google Scholar 

  • Ferris, J.P. (1988). Comet Halley — A good omen! Origins Life 18, 161–163.

    Article  ADS  Google Scholar 

  • Gilbert, W. (1987). The exon theory of genes. Cold Spring Harbor Symp. Quant. Biol. 52, 901–905.

    Article  Google Scholar 

  • Greenberg, J.M. (1981). Chemical evolution of interstellar dust — A source of prebiotic material? In Comets and the Origin of Life, C. Ponnamperuma, ed., D. Reidel Publ. Co., Dordrecht, Netherlands, pp. 111–127.

    Chapter  Google Scholar 

  • Greenberg, J.M. (1982). What are comets made of? A model based on interstellar dust. In Comets, L.L. Wilkening, ed., University of Arizona Press, Tucson, pp. 131–163.

    Google Scholar 

  • Greenberg, J.M. (1984). Chemical evolution in space. Origins Life 14, 25–36.

    Article  ADS  Google Scholar 

  • Greenberg, J.M. (1987). Comet Halley: A carrier of interstellar dust chemical evolution. Adv. Space Res. 7, 33–44.

    Article  ADS  Google Scholar 

  • Greenberg, J.M., Zhao, N., and Hage, J. (1989). Chemical evolution of interstellar dust, comets and the origin of life. Ann. Phys. Fr. 14, 103–131.

    Article  ADS  Google Scholar 

  • Greve, J.M., Davis, G., Meyer, A.M., et al., (1989). The major human rhinovirus receptor is ICAM-1. Cell 56, 839–847.

    Article  Google Scholar 

  • Henderson, I.M., Hendy, M.D., and Penny, D.J. (1989). Influenza viruses, comets and the science of evolutionary trees. J. Theoret. Biol. 140, 289–303.

    Article  Google Scholar 

  • Hori, H., and Ozawa, S. (1987). Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol. Biol. Evol. 4, 445–472.

    Google Scholar 

  • Hoyle, F. (1984). The Intelligent Universe, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Hoyle, F., and Wickramasinghe, N.C. (1977). Identification of the 2,200 Å interstellar absorption feature. Nature 270, 323–324.

    Article  ADS  Google Scholar 

  • Hoyle, F., and Wickramasinghe, N.C. (1978). Influenza from space? New Scientist 79, 946–948.

    Google Scholar 

  • Hoyle, F., and Wickramasinghe, C. (1979). Diseases From Space, Dent, London, pp. 152–154.

    Google Scholar 

  • Hoyle, F., and Wickramasinghe, C. (1981). Comets — A vehicle for panspermia. In Comets and the Origin of Life, C. Ponnamperuma, ed., D. Reidel Publ. Co., Dordrecht, Holland, pp. 227–239.

    Chapter  Google Scholar 

  • Hoyle, F., and Wickramasinghe, N.C. (1986). The case for life as a cosmic phenomenon. Nature 322, 509–511.

    Article  ADS  Google Scholar 

  • Hoyle, F., and Wickramasinghe, N.C. (1987). Organic dust in comet Halley. Nature 328, 117.

    Article  ADS  Google Scholar 

  • Hua, L.-L., Kobayashi, K., Ochiai, E.-L, Gehrke, C.W., Gerhardt, K.O., and Ponnamperuma, C. (1986). Identification and quantitation of nucleic acid bases in carbonaceous chondrites. Origins Life 16, 226–227, 1986.

    Article  ADS  Google Scholar 

  • Huebner, W.F. (1987). First polymer in space identified in comet Halley. Science 237, 628–630.

    Article  ADS  Google Scholar 

  • Hutcheon, I.D., and Hutchison, R. (1989). Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets. Nature 377, 238–241.

    Article  ADS  Google Scholar 

  • Ip, W-H., and Fernandez, J.A. (1988). Exchange of condensed matter among the outer and terrestrial protoplanets and the effect of surface impact and atmospheric accretion. Icarus 74, 47–61.

    Article  ADS  Google Scholar 

  • Irvine, W.M., and Hjalmarson, A. (1984). The chemical composition of interstellar molecular clouds. Origins Life 14, 15–23.

    Article  ADS  Google Scholar 

  • Irvine, W.M., Leschine, S.B., and Schloerb, F.P. (1980). Thermal history, chemical composition, and relationship of comets to the origin of life. Nature 283, 748–749.

    Article  ADS  Google Scholar 

  • Ivanov, C.P., Stoyanova, R.Z., and Mancheva, I.N. (1984). Some evidence for the possible presence of peptides in two chondrites by use of a sequencing procedure. Origins Life 14, 61–68.

    Article  ADS  Google Scholar 

  • Jessberger, E. (1990). Chemical properties of cometary dust. In Comets in the Post-Halley Era, R.L. Newburn, Jr., M. Neugebauer, and J. Rahe, eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.

    Google Scholar 

  • Jessberger, E.K., and Kissel, J. (1987). Bits and pieces of Halley’s comet. Lunar Planet. Sci. Conf. XVII, 466–467.

    Google Scholar 

  • Johnstone, A., and Krankowsky, D. (1990). The composition of comets. In Comets in the Post-Halley Era, R.L. Newburn, Jr., M. Neugebauer, and J. Rahe, eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.

    Google Scholar 

  • Joyce, G.F. (1987). Nonenzymatic template-directed synthesis of informational macromolecules. Cold Spring Harbor Symp. Quant. Biol. 52, 41–51.

    Article  Google Scholar 

  • Joyce, G.F., Schwartz, A.W., Miller, S.L., and Orgel, L.E. (1987). The case for an ancestral genetic system involving simple analogs of the nucleotides. Proc. Natl. Acad. Sci. USA 84, 4398–4402.

    Article  ADS  Google Scholar 

  • Joyce, G.F., Visser, G.M., van Boekel, C.A.A., van Boom, J.H., Orgel, L.E., and van Westrench, J. (1984). Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310, 602–604.

    Article  ADS  Google Scholar 

  • Kissel, J., and Krueger, F.R. (1987). The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326, 755–760.

    Article  ADS  Google Scholar 

  • Knoll, A.H., and Barghoorn, E.S. (1977). Archean microfossils showing cell division from the Swaziland system of South Africa. Science 198, 396–398.

    Article  ADS  Google Scholar 

  • Korth, A., Marconi, M.L., Mendis, D.A., et al. (1989). Probable detection of organic-dust-borne aromatic C3H3 + ions in the coma of comet Halley. Nature 337, 53–55.

    Article  ADS  Google Scholar 

  • Krueger, F.R., and Kissel, J. (1989). Aspects of self-organization. Origins Life 19, 87–93.

    Article  Google Scholar 

  • Kushner, D. (1981). Extreme environments: Are there any limits to life? In Comets and the Origin of Life, C. Ponnamperuma, ed., D. Reidel Publ. Co., Dordrecht, Holland, pp. 241–248.

    Chapter  Google Scholar 

  • Langevin, Y., Kissel, J., Bertaux, J-L., and Chassefière, E. (1987). First statistical analysis of 5000 mass spectra of cometary grains obtained by PUMA (Vega 1) and PIA (Giotto) impact ionization mass spectrometers in the compressed modes. Astron. Astrophys. 187, 761–766.

    ADS  Google Scholar 

  • Lazcano-Araujo, R., and Orò, J. (1981). Cometary material and the origins of life on earth. In Comets and the Origin of Life, C. Ponnamperuma, ed., D. Reidel Publ. Co., Dordrecht, Holland, 1981, pp. 191–225.

    Chapter  Google Scholar 

  • Lazcano, A., Guerroro, R., Margulis, L., and Oró, J. (1988). The evolutionary transition from RNA to DNA in early cells. J. Mol. Evol. 27, 283–290.

    Article  Google Scholar 

  • Leger, A., and Puget, J.L. (1984). Identification of the “unidentified” IR emission features of interstellar dust? Astron. Astrophys. 137, L5–L8.

    ADS  Google Scholar 

  • Lehninger, A.L. (1982). Biochemistry, Worth Publishers, Inc., New York, p. 46.

    Google Scholar 

  • Maher, K.A., and Stevenson, D.J. (1988). Impact frustration of the origin of life. Nature 331, 612–614.

    Article  ADS  Google Scholar 

  • Mar, A., and Oró, J. (1989). Synthesis of the coenzymes, ADPG, CDPG, and CDP-ethanolamine under primitive earth conditions. Origins Life 19, 254–255.

    Article  Google Scholar 

  • McKinnon, W.B. (1989). Impacts giveth and impacts taketh away. Nature 338, 465–466.

    Article  ADS  Google Scholar 

  • McSween, H.Y. (1976). A new type of chondritic meteorite found in lunar soil. Earth Planet. Sci. Letters 31, 193–199.

    Article  ADS  Google Scholar 

  • Melosh, H.J. (1985). Ejection of rock fragments from planetary bodies. Geology 13, 144–148.

    Article  ADS  Google Scholar 

  • Miller, S.L. (1987). Which organic compounds would have occurred on the prebiotic earth? Cold Spring Harbor Symp. Quant. Biol. 52, 17–27.

    Article  Google Scholar 

  • Minn, K., and Greenberg, J.M. (1987). Formaldehyde absorption and visual extinction in the dark cloud L1709. Astron. Astrophys. 184, 315–321.

    ADS  Google Scholar 

  • Mitchell, D.L., Lin, R.P., Anderson, K.A., et al. (1987). Evidence for chain molecules enriched in carbon, hydrogen, and oxygen in comet Halley. Science 237, 626–628.

    Article  ADS  Google Scholar 

  • Morowitz, H.J., Heinz, B., and Deamer, D.W. (1988). The chemical logic of a minimum protocell. Origins Life 18, 281–287.

    Article  ADS  Google Scholar 

  • Muhkin, L.M., Gerasimov, M.V., and Safonova, E.N. (1989). Origin of precursors of organic molecules during evaporation of meteorites and mafic terrestrial rocks. Nature 340, 46–48.

    Article  ADS  Google Scholar 

  • Mumma, M.J., Weaver, H.A., and Larson, H.P. (1987). The ortho-para ratio of water vapor in comet P/Halley. Astron. Astrophys. 187, 419–424.

    ADS  Google Scholar 

  • Oberbeck, V.R., and Fogelman, G. (1989a). Impacts and the origin of life. Nature 339, 434.

    Article  ADS  Google Scholar 

  • Oberbeck, V.R., and Fogleman, G. (1989b). Estimates of the maximum time required to originate life. Origins Life 19, 549–560.

    Article  Google Scholar 

  • Oberbeck, V.R., McKay, C.P., Scattergood, T.W., Carle, G.C., and Valentin, J.R. (1989). The role of cometary particle coalescence in chemical evolution. Origins Life 19, 39–55.

    Article  Google Scholar 

  • Orgel, L.E. (1968). The evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393.

    Article  Google Scholar 

  • Orgel, L.E. (1987). Evolution of the genetic apparatus: A review. Cold Spring Harbor Symp. Quant. Biol. 52, 9–16.

    Article  Google Scholar 

  • Oró, J. (1961). Comets and the formation of biochemical compounds on the primitive earth. Nature 190, 389–390.

    Article  ADS  Google Scholar 

  • Oró, J., and Berry, J.M. (1987). Comets and life. Adv. Space Res. 7, 23–32.

    Article  ADS  Google Scholar 

  • Pflug, H.D. (1984a). Early geological record and the origin of life. Naturwiss. 71, 63–68.

    Article  ADS  Google Scholar 

  • Pflug, H.D. (1984b). Microvesicles in meteorites, a model of pre-biotic evolution. Naturwiss. 71, 531–532.

    Article  ADS  Google Scholar 

  • Ponnamperuma, C., and Ochiai, E. (1982). Comets and the origin of life. In Comets, L. Wilkening, ed., University of Arizona Press, Tucson, pp. 696–703.

    Google Scholar 

  • Prialnik, D., Bar-Nun, A., and Podolak, M. (1987). Radiogenic heating of comets by 26Al and implications for their time of formation. Astrophys. J. 319, 993–1002.

    Article  ADS  Google Scholar 

  • Rickman, H. (1990). The thermal history and structure of cometary nuclei. In Comets in the Post-Halley Era, R.L. Newburn, Jr., M. Neugebauer, and J. Rahe, eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.

    Google Scholar 

  • Robertson, D.L., and Joyce, G.F. (1990). Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468.

    Article  ADS  Google Scholar 

  • Sagan, C., and Khare, B.N. (1979). Tholins: Organic chemistry of interstellar grains and gas. Nature 277, 102–107.

    Article  ADS  Google Scholar 

  • Sekanina, Z. (1983). The Tunguska event: No cometary signature in evidence. Astron. J. 88, 1382–1414.

    Article  ADS  Google Scholar 

  • Senn, S.J. (1981). Can you really catch cold from a comet? New Scientist 92, 244–246.

    Google Scholar 

  • Shapiro, R. (1988). Prebiotic ribose synthesis: A critical analysis. Origins Life 18, 71–86.

    Article  ADS  Google Scholar 

  • Shidlowski, M. (1988). A 3,800-million year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313–318.

    Article  ADS  Google Scholar 

  • Shidlowski, M. (1989). Initiation of life processes on the early earth: A case for panspermia? Origins Life 19, 454–455.

    Article  Google Scholar 

  • Shock, E.L., and Schulte, M.D. (1990). Amino acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons. Nature 343, 728–731.

    Article  ADS  Google Scholar 

  • Sleep, N.H., Sahnle, K.J., Kasting, J.F., and Morowitz, H.J. (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342, 139–142.

    Article  ADS  Google Scholar 

  • Snyder, L.E., Hollis, J.M., Svenram, R.D., Lovas, F.J., Brown, L.W., and Buhl, D. (1983). An extensive search for conformer II glycine. Astrophys. J. 268, 123–128.

    Article  ADS  Google Scholar 

  • Staunton, D.E., Merluzzi, V.J., Rothlein, R., Barton, R., Marlin, S.D., and Springer, T.A. (1989). A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinovirus. Cell 56, 849–853.

    Article  Google Scholar 

  • Strazzulla, G., Calcagno, L., and Foti, G. (1983). Mon. Not. R. Astron. Soc. 204, 59p–62p.

    ADS  Google Scholar 

  • Strazzula, G., and Johnson, R.E. (1990). Irradiation effects on comets and cometary debris. In Comets in the Post-Halley Era, R.L. Newburn, Jr., M. Neugebauer, and J. Rahe, eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.

    Google Scholar 

  • Stribling, R., and Miller, S.L. (1987). Energy yields for hydrogen cyanide and formaldehyde synthesis: The HCN and amino acid concentrations in the primitive ocean. Origins Life 17, 261–273.

    Article  ADS  Google Scholar 

  • Thomas, P.J., Chyba, C.F., Brookshaw, L., and Sagan, C. (1989). Impact delivery of organic molecules to the early earth and implications for the terrestrial origin of life. Lunar Planet. Sci. Conf. XX, 1117–1118.

    ADS  Google Scholar 

  • Urey, H.C. (1966). Biological material in meteorites: A review. Science 151, 157–166.

    Article  ADS  Google Scholar 

  • Waldrop, M.M. (1989). Catalytic RNA wins the chemistry Nobel. Science 246, 325.

    Article  ADS  Google Scholar 

  • Waldrop, M.M. (1990). Spontaneous order, evolution, and life. Science 247, 1543.

    Article  ADS  Google Scholar 

  • Walker, J.C.G., Klein, C., Shidlowski, M., Schopf, J.W., Stevenson, D.J., and Walter, M.R. (1983). In Earth’s Earliest Biosphere: Its Origin and Evolution, J. Schopf., ed., Princeton University Press, Princeton, New Jersey, pp. 260–290.

    Google Scholar 

  • Wallis, M.K. (1980). Radiogenic melting of primordial comet interiors. Nature 284, 431–433.

    Article  ADS  Google Scholar 

  • Wdowiak, T.J., Flickinger, G.C., and Cronin J.R. (1989). Insoluable organic material of the Orgueil carbonaceous chondrite and the unidentified infrared bands. Astrophys. J. 328, L75–L79.

    Article  ADS  Google Scholar 

  • Weber, A.L. (1989). Glyceraldehyde as a source of energy and matter for the origin of life. Origins Life 19, 317–318.

    Article  Google Scholar 

  • Weber, P., and Greenberg, J.M. (1985). Can spores survive in interstellar space? Nature 316, 403–407.

    Article  ADS  Google Scholar 

  • Weiner, A.M. (1987). The origins of life. In Molecular Biology of the Gene, 4th ed., J.D. Watson, et al., eds., The Benjamins/Cummings Publ. Co., Inc., Menlo Park, California, pp. 1098–1163.

    Google Scholar 

  • Weissman, P.R. (1983). The mass of the Oort cloud. Astron. Astrophys. 118, 90–95.

    ADS  Google Scholar 

  • Weissman, P.R. (1988). The impact history of the solar system: Implications for the origin of atmospheres. In Origin and Evolution of Planetary and Satellite Atmospheres, S.K. Atreya, et al., eds., University of Arizona Press, Tucson, pp. 230–267.

    Google Scholar 

  • Weissman, P.R. (1989). Physical processing of cometary nuclei since their formation. In Comet Halley 1986: Worldwide Investigations, Results and Interpretations, P. Moore, and J. Mason, eds., Ellis Horwood Ltd., Chichester, U.K., in press.

    Google Scholar 

  • Weissman, P.R. (1990a). The Oort Cloud. Nature 344, 825–830.

    Article  ADS  Google Scholar 

  • Weissman, P.R. (1990b). Dynamical history of the Oort cloud. In Comets in the Post-Halley Era, R.L. Newburn, Jr., M. Neugebauer, and J. Rahe, eds., Kluwer Academic Publishers, Dordrecht, Netherlands, in press.

    Google Scholar 

  • Wetherill, G.W. (1979). Apollo objects. Sci. Am. 240, 54–65.

    Article  ADS  Google Scholar 

  • Wickramasinghe, D.T., and Allen, D.A. (1980). The 3.4-µm interstellar absorption feature. Nature 287, 518–519.

    Article  ADS  Google Scholar 

  • Woese, C.R. (1967). The origin of the genetic code. Harper and Row, New York, p. 193.

    Google Scholar 

  • Woese, C.R. (1987). Bacterial evolution. Microbiol. Rev. 51, 221–271.

    Google Scholar 

  • Zhao, M., and Bada, J.L. (1989). Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark. Nature 339, 463–465.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marcus, J.N., Olsen, M.A. (1991). Biological Implications of Organic Compounds in Comets. In: Newburn, R.L., Neugebauer, M., Rahe, J. (eds) Comets in the Post-Halley Era. Astrophysics and Space Science Library, vol 167. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3378-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3378-4_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5494-2

  • Online ISBN: 978-94-011-3378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics