Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 335))

Abstract

We derive exponential inequalities for the oscillation of functions of random variables about their mean. This is illustrated on the Kolmogorov-Smirnov statistic, the total variation distance for empirical measures, the Vapnik-Chervonenkis distance, and various performance criteria in nonparametric density estimation. We also derive bounds for the variances of these quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • K. S. Alexander, “Probability inequalities for empirical processes and a law of the iterated logarithm,” Annals of Probability, vol. 12, pp. 1041–1067, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  • K. Azuma, “Weighted sums of certain dependent random variables,” Tohoku Mathematical Journal, vol. 37, pp. 357–367, 1967.

    Article  MathSciNet  Google Scholar 

  • L. Breiman, W. Meisel, and E. Purcell, “Variable kernel estimates of multivariate densities,” Technometrics, vol. 19, pp. 135–144, 1977.

    Article  MATH  Google Scholar 

  • H. Chernoff, “A measure of asymptotic efficiency of tests of a hypothesis based on the sum of observations,” Annals of Mathematical Statistics, vol. 23, pp. 493–507, 1952.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Deheuvels, “Sur une famille d’estimateurs de la densité d’une variable aléatoire,” Comptes Rendus de l’Académie des Sciences de Paris, vol. 276, pp. 1013–1015, 1973.

    MathSciNet  MATH  Google Scholar 

  • P. Deheuvels, “Sur l’estimation séquentielle de la densité,” Comptes Rendus de l’Académie des Sciences de Paris, vol. 276, pp. 1119–1121, 1973.

    MathSciNet  MATH  Google Scholar 

  • L. Devroye, “Bounds for the uniform deviation of empirical measures,” Journal of Multivariate Analysis, vol. 12, pp. 72–79, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Devroye, “The equivalence of weak, strong and complete convergence in L1 for kernel density estimates,” Annals of Statistics, vol. 11, pp. 896–904, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Devroye, A Course in Density Estimation, Birkhäuser, Boston, 1987.

    MATH  Google Scholar 

  • L. Devroye, “An application of the Efron-Stein inequality in density estimation,” Annals of Statistics, vol. 15, pp. 1317–1320, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Devroye, “Asymptotic performance bounds for the kernel estimate,” Annals of Statistics, vol. 16, pp. 1162–1179, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Devroye, “The kernel estimate is relatively stable,” Probability Theory and Related Fields, vol. 77, pp. 521–536, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Devroye, “The double kernel method in density estimation,” Annales de l’Institut Henri Poincaré, vol. 25, pp. 533–580, 1989.

    MathSciNet  MATH  Google Scholar 

  • L. Devroye and L. Györfi, Nonparametric Density Estimation: The L1 View, John Wiley, New York, 1985.

    MATH  Google Scholar 

  • L. Devroye and C. S. Penrod, “The strong uniform convergence of multivariate variable kernel estimates,” Canadian Journal of Statistics, vol. 14, pp. 211–219, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  • R. M. Dudley, “Central limit theorems for empirical measures,” Annals of Probability, vol. 6, pp. 899–929, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Dvoretzky, J. Kiefer, and J. Wolfowitz, “Asymptotic minimax character of a sample distribution function and of the classical multinomial estimator,” Annals of Mathematical Statistics, vol. 33, pp. 642–669, 1956.

    Article  MathSciNet  Google Scholar 

  • B. Efron and C. Stein, “The jackknife estimate of variance,” Annals of Statistics, vol. 9, pp. 586–596, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Gaenssler, Empirical Processes, Lecture Notes-Monograph Series, vol. 3, Institute of Mathematical Statistics, Hayward, CA., 1983.

    Google Scholar 

  • N. Glick, “Sample-based classification procedures related to empiric distributions,” IEEE Transactions on Information Theory, vol. IT-22, pp. 454–461, 1976.

    Article  MathSciNet  Google Scholar 

  • P. Hall, “Limit theorems for stochastic measures of the accuracy of density estimators,” Stochastic Processes and Applications, vol. 13, pp. 11–25, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the American Statistical Association, vol. 58, pp. 13–30, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  • C. McDiarmid, “On the method of bounded differences,” Technical Report, Institute of Economics and Statistics, Oxford University, 1989.

    Google Scholar 

  • E. Parzen, “On the estimation of a probability density function and the mode,” Annals of Mathematical Statistics, vol. 33, pp. 1065–1076, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  • I. F. Pinelis, “To the Devroye’s estimates for distributions of density estimators,” Technical Report, 1990.

    Google Scholar 

  • D. Pollard, Convergence of Stochastic Processes, Springer-Verlag, New York, 1984.

    Book  MATH  Google Scholar 

  • M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,” Annals of Mathematical Statistics, vol. 27, pp. 832–837, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  • H. Scheffé, “A useful convergence theorem for probability distributions,” Annals of Mathematical Statistics, vol. 18, pp. 434–458, 1947.

    Article  MathSciNet  MATH  Google Scholar 

  • J. M. Steele, “An Efron-Stein inequality for nonsymmetric statistics,” Annals of Statistics, vol. 14, pp. 753–758, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  • V. N. Vapnik and A. Ya. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities,” Theory of Probability and its Applications, vol. 16, pp. 264–280, 1971.

    Article  MATH  Google Scholar 

  • R. A. Vitale, “An expansion for symmetric statistics and the Efron-Stein inequality,” in: Inequalities in Statistics and Probability, pp. 112–114, ed. Y. L. Tong, IMS, Hayward, CA., 1984.

    Chapter  Google Scholar 

  • C. T. Wolverton and T. J. Wagner, “Recursive estimates of probability densities,” IEEE Transactions on Systems. Science and Cybernetics, vol. 5, p. 307, 1969.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Devroye, L. (1991). Exponential Inequalities in Nonparametric Estimation. In: Roussas, G. (eds) Nonparametric Functional Estimation and Related Topics. NATO ASI Series, vol 335. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3222-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3222-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5420-1

  • Online ISBN: 978-94-011-3222-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics