Skip to main content

Physical models of thrust wedges

  • Chapter
Thrust Tectonics

Abstract

Scaled sandbox models have been used to simulate the growth and sequential development of critical thrust wedges in isotropic cohesionless and anisotropic cohesionless materials. Variations in the initial thickness of the layered sequence, the friction of the basal detachment, and the anisotropy of the layered system have been systematically investigated. Imbricate fans of dominantly foreland-vergent thrust systems are developed similar to those found in accretionary prisms and in foreland fold and thrust belts. Critical taper wedges close to theoretically predicted geometries are developed for intermediate values of basal friction (µb = 0.47 whereas for the lower value of basal friction low-taper wedges are formed with tapers less than predicted by theory. Supra-critical wedges are formed when the basal friction equals or is greater than the coefficient of friction in the wedge and the wedge has a high taper closer to the angle of rest for the modelling material. The spacing/thickness ratio of foreland-vergent thrusts increases as the layer thickness increases. The spacing of thrust faults increases with increased basal friction. Higher basal friction or anisotropy within the layered systems favours displacement along foreland-vergent thrusts and suppresses backthrusts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso, J. L. & Teixell A. 1991. Forelimb deformation in some natural examples of fault-propagation folds (this volume).

    Google Scholar 

  • Bally, A. W., Gordy, P. L. & Stewart, G. A. 1966. Structure, seismic data, and orogenic evolution of the southern Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 14, 337–381.

    Google Scholar 

  • Boyer, S. E. & Elliott, D. 1982. Thrust systems. Bulletin of the American Assocation of Petroleum Geologists, 66, 1196–1230.

    Google Scholar 

  • Burchfiel, B. C., Wernicke, B., Willemin, J. H., Axen, G.J. & Cameron, C. S. 1982. A new type of decollement thrusting. Nature, 300, 513–515.

    Article  Google Scholar 

  • Cadell, H. M. 1889. Experimental researches in mountain building. Transactions of Royal Society of Edinburgh, 35, 337–357.

    Article  Google Scholar 

  • Dahlen, F. A. 1984. Noncohesive critical Coulomb wedges: an exact solution. Journal of Geophysical Research, 89, 10125–10133.

    Article  Google Scholar 

  • Dahlen, F. A. 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18, 55–99.

    Article  Google Scholar 

  • Dahlen, F. A. & Barr, T. D. 1989. Brittle frictional mountain building, 1, Deformation and mechanical energy budget. Journal of Geophysical Research, 94, 3906–3922.

    Article  Google Scholar 

  • Dahlen, F. A. & Suppe, J. 1988. Mechanics, growth, and erosion of mountain belts. In: Clark, S. P., Jr., Burchfiel, B. C. & Suppe, J. (eds) Processes in Continental Lithospheric Deformation. Geological Society of America Special Paper, 218, 161–178.

    Google Scholar 

  • Dahlen, F. A., Suppe, J. J. & Davis, D. M. 1984. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory. Journal of Geophysical Research, 89, 10087–10101.

    Article  Google Scholar 

  • Dahlstrom, C.D.A. 1970. Structural geology of the eastern margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 18, 332–406.

    Google Scholar 

  • Davis, D. M. & Engelder, T. 1985. The role of salt in fold-and-thrust belts. Tectonophysics, 119, 67–89.

    Article  Google Scholar 

  • Davis, D. M. & von Huene, R. 1987. Inferences on sediment strength and fault friction from structures at the Aleutian Trench. Geology, 15, 517–522.

    Article  Google Scholar 

  • Davis, D. M., Suppe, J. & Dahlen, F. A. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. Journal of Geophysical Research, 88, 1153–1172.

    Article  Google Scholar 

  • Elliott, D. & Johnson, M.R.W. 1980. Structural evolution in the northern part of Moine thrust belt, NW Scotland. Transactions of Royal Society of Edinburgh (Earth Sciences), 71, 69–96.

    Article  Google Scholar 

  • Ellis, P. G. & McClay, K. R. 1988. Listric extensional fault systems — results of analogue model experiments. Basin Research, 1, 55–70.

    Article  Google Scholar 

  • Horsfield, W. T. 1977. An experimental approach to basement controlled faulting. Geologie en Mijinbouw, 56, 363–370.

    Google Scholar 

  • Hubbert, M. K. 1937. Theory of scale models as applied to the study of geologic structures. Geological Society of America Bulletin, 48, 1459–1520.

    Google Scholar 

  • Hubbert, M. K. 1951. Mechanical basis for certain familiar geologic structures. Geological Society of America Bulletin, 62, 355–372.

    Article  Google Scholar 

  • Hubbert, M. K. & Rubey, W. M. 1959. Role of fluid pressure in mechanics of thrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geological Society of America Bulletin, 70, 115–166.

    Article  Google Scholar 

  • Jadoon, I.A.K., Lawrence, R. D. & Lillie, R. J. 1991. Balanced and retrodeformed geological cross-section from the frontal Sulaiman Lobe, Pakistan: Duplex development in thick strata along the western margin of the Indian Plate (this volume).

    Google Scholar 

  • Krantz, R. W. 1991. Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures. Tectonophysics, 188, 203–207.

    Article  Google Scholar 

  • Lewis, S. D., Ladd, J. W. & Bruns, T. R. 1988. Structural development of an accretionary prism by thrust and strike-slip faulting: Shumagin region, Aleutian Trench. Geological Society of America Bulletin, 100, 767–782.

    Article  Google Scholar 

  • Lillie, R. J., Johnson, G. D., Yousuf, M., Zamin, A.S.H. & Yeats, R. S. 1987. Structural development within the Himalayan foreland fold-and-thrust belts of Pakistan. In: Beaumont, C. & Tankard, A. J. (eds) Sedimentary Basins and Basin-Forming Mechanisms. Canadian Society of Petroleum Gelogists Memoir, 12, 379–392.

    Google Scholar 

  • Malavieille, J. 1984. Modélisation expérimentale des chevauchements imbriqués: Application aux chaînes de montagnes. Geological Society of France Bulletin, 7, 129–138.

    Google Scholar 

  • Mandl, G. 1988. Mechanics of Tectonic Faulting: Models and Basic Concepts. Developments in Structural Geology, 1, Elsevier, Amsterdam, 407p.

    Google Scholar 

  • McClay, K.R. 1990. Deformation mechanics in analogue models of extensional fault systems. In: Knipe, R. J. & Rutter, E. H. (eds), Deformation Mechanisms, Rheology and Tectonics. Geological Society of London Special Publication, 54, 445–453.

    Google Scholar 

  • McClay, K.R. & Ellis, P. G. 1987a. Analogue models of extensional fault geometries. In: Coward, M. P., Dewey, J. F. & Hancock, P. L. (eds) Continental Extensional Tectonics. Geological Society of London Special Publications, 28, 109–125.

    Google Scholar 

  • McClay, K.R. & Ellis, P. G. 1987b. Geometries of extensional fault systems developed in model experiments. Geology, 15, 341–344.

    Article  Google Scholar 

  • Moore, G. F. & Shipley, T. H. 1988. Mechanics of sediment accretion in the Middle America Trench off Mexico. Journal of Geophysical Research, 93, 8911–8927.

    Article  Google Scholar 

  • Mulugeta, G. 1988a. Squeeze box in a centrifuge. Tectonophysics, 148, 323–335.

    Article  Google Scholar 

  • Mulugeta, G. 1988b. Modelling the geometry of Coulomb thrust wedges. Journal of Structural Geology, 10, 847–859.

    Article  Google Scholar 

  • Mulugeta, G. & Koyi, H. 1987. Three-dimensional geometry and kinematics of experimental piggyback thrusting. Geology, 15, 1052–1056.

    Article  Google Scholar 

  • Price, R. A. 1981. The Cordilleran foreland thrust and fold belt in the southern Canadian Rocky Mountains. In: McClay, K. R. & Price, N. J. (eds) Thrust and Nappe Tectonics, Geological Society of London Special Publications, 9, 427–448.

    Google Scholar 

  • Price, R. A. 1988. The mechanical paradox of large overthrusts. Geological Society of America Bulletin, 100, 1898–1908.

    Article  Google Scholar 

  • Ramberg, H. 1981. Gravity, Deformation, and the Earth’s Crust: In Theory, Experiments and Geological Application (2nd ed.). Academic Press, London. 452p.

    Google Scholar 

  • Roure, F., Howell, D. G., Guellec, S. & Casero, P. 1990. Shallow structures induced by deep-seated thrusting. In: Letouzey, J. (ed.) Petroleum and Tectonics in Mobile Belts, Éditions Technip, Paris, 43, 15–30.

    Google Scholar 

  • Seely, D. R., Vail, P. R. & Walton, G. G. 1974. Trench slope model. In: Burk, C. A. & Drake, D. L. (eds) The Geology of Continental Margins. Springer-Verlag, New York. 249–260.

    Google Scholar 

  • Stanley, R. S. 1990. The evolution of mesoscopic imbricate thrust faults—an example from the Vermont Foreland, USA. Journal of Structural Geology, 12, 227–241.

    Article  Google Scholar 

  • Westbrook, G. K. 1982. The Barbados Ridge complex: Tectonics of a mature forearc system. In: Leggett, J. K. (ed.) Trench-Forearc Geology. Geological Society of London Special Publication, 10, 275–290.

    Google Scholar 

  • Westbrook, G. K., Ladd, J. W., Buhl, P., Bangs, N. & Tiley, G. J. 1988. Cross section of an accretionary wedge: Barbados Ridge complex. Geology, 16, 631–635.

    Article  Google Scholar 

  • Willis, B. 1892. The mechanics of Appalachian structure. US Geological Survey 13th Annual Report, 271–281.

    Google Scholar 

  • Zhao, W.-L., Davis, D. M., Dahlen, F. A. & Suppe, J. 1986. Origin of convex accretionary wedges: Evidence from Barbados. Journal of Geophysical Research, 91, 10246–10258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 K.R. McClay

About this chapter

Cite this chapter

Huiqi, L., McClay, K.R., Powell, D. (1992). Physical models of thrust wedges. In: McClay, K.R. (eds) Thrust Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3066-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3066-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-43900-1

  • Online ISBN: 978-94-011-3066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics