Skip to main content

Abstract

The technologies of isolating genes conferring resistance and engineering them into crops have been worked out, and a number of field trials are under way. There seem to be few new initiatives. There are three major threats to the world food supply that are not being addressed where engineering will help: Parasitic weeds, for which there are no selective herbicides, halve yields in the third world. Engineering certain target-site resistances into the crops should allow selective control of these parasites; (2) Weeds have evolved cross resistances to all previously usable wheat selective herbicides, which can be alleviated by engineering new resistances into wheat; (3) Major maize herbicides in the triazine and chloroacetamide groups have been banned in various countries. Triazine-resistant weeds are also problems on 3 million hectares. Thus, new selectivities may have to be engineered into maize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Holt, J.S. and LeBaron, H.M., Significance and distribution of herbicide resistance. Weed Technol., 1990, 4, 141–149.

    CAS  Google Scholar 

  2. Rey, P., Eymery, F. and Peltier, G., Atrazine and diuron resistant plants from photo-autotrophic protoplast-derived cultures of Nicotiana plumbaginifolia. Plant Cell Rep., 1990, 9, 241–244.

    Article  CAS  Google Scholar 

  3. Smeda, R.J., Hasegawa, P.M. and Weller, S.C., Mechanism(s) of tolerance to atrazine in photo-autotrophic potato cells. Weed Sci Soc. Amer. Abstr., 1989, 29, 164.

    Google Scholar 

  4. Gressel, J., Method of Producing Herbicide Resistant Plant Varieties and Plants Produced Thereby. United States Patent, 1990, 4, 900,676.

    Google Scholar 

  5. Souza-Machado, V., Inheritance and breeding potential of triazine tolerance and resistance in plants. In Herbicide Resistance in Plants, eds. H.M. LeBaron and J. Gressel, New York, Wiley, 1982, pp. 257–274.

    Google Scholar 

  6. Beversdorf, W.D., Hume, D.J. and Donnelly-Vanderloo, J.J., Agronomic performance of triazine-resistant and susceptible reciprocal spring Canola hybrids. Crop Sci., 1988, 28, 932–934.

    Article  Google Scholar 

  7. Thomzik, J.E. and Hain, R, Introduction of metribuzin resistance into German winter oilseed rape of double-low quality. Pflanzenschutz-Nachrichten Bayer, 1990, 43, 61–87.

    Google Scholar 

  8. Forcella, F., Herbicide-resistant crops: yield penalties and weed thresholds for oilseed rape (Brassica napus L.). Weed Res., 1987, 27, 31–34.

    Article  CAS  Google Scholar 

  9. J.J.S. Van Rensen, this volume.

    Google Scholar 

  10. Sigematsu, Y., Sato, F. and Yamada, Y., The mechanism of herbicide resistance in tobacco cells with a new mutation in the QB protein. Plant Physiol., 89, 986–992.

    Google Scholar 

  11. Pay, A., Smith, M.A., Nagy, F. and Marton, L., Sequence of the psbA gene from wild type and triazine-resistant Nicotiana plumbaginifolia. Nucleic Acids Res., 1988, 16, 8176.

    Article  PubMed  CAS  Google Scholar 

  12. Kishore, G.M., EPSP-synthase-from biochemistry to engineering of glyphosate tolerance. In Biotechnology in Crop Protection, eds. J.J. Menn, RM. Hollingsworth and P.A. Hedin, American Chemical Society SympOSia No. 379, Washington, DC, pp. 37–48.

    Google Scholar 

  13. Falco, S.C., Dumas, K.S. and McDevitt, R.E., Molecular genetic analysis of sulfonylurea herbicide action resistance in yeast. In Molecular Form and Function of the Plant Genome, ed. L. Van Vloten-Doting, Plenum, New York, 1985, pp. 467–478.

    Google Scholar 

  14. Mazur, B.J. and Falco, S.C., The development of herbicide resistant crops. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1989, 40, 441–470.

    Article  CAS  Google Scholar 

  15. Anderson, P.C and Georgeson, M., Herbicide-tolerant mutants of corn. Genome, 1989, 31, 994–99.

    Article  CAS  Google Scholar 

  16. Stannard, M.E. and Fay, P.K., Selection of alfalfa seedlings for tolerance to chlorsulfuron. Weed Sci. Soc. of Amer. Abst., 1987, 27, 61.

    Google Scholar 

  17. Haughn, G.W. and Somerville, C.R, A mutation causing imidazolinone resistance maps to the Csr1 locus of Arabidopsis thaliana. Plant Physiol., 92, 1081–1085.

    Google Scholar 

  18. Saari, L.L., Cotterman, J.c. and Primiani, M.M., Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia. Plant Physiol., 1990, 93, 55–61.

    Article  PubMed  CAS  Google Scholar 

  19. Schloss, J.V., Ciskanik, L.M. and Van Dyk, D.E., Origin of the herbicide binding site of acetolactate synthase. Nature, 1988, 331, 360–362.

    Article  CAS  Google Scholar 

  20. Gabard, J.M., Charest, P.J., Iyer, V. N. and Miki, B.L., Cross-resistance to short residual sulfonylurea herbicides in transgenic tobacco plants. Plant Physiol., 1989, 91, 574–580.

    Article  PubMed  CAS  Google Scholar 

  21. Miki, B.I., Labbe, H., Hattori, J., Ouellet, T., Gabard, J., Sunohara, G., Charest, P.J. and Iyer, V.N., Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor. Appl. Genet., 1990, 80, 449–458.

    Article  CAS  Google Scholar 

  22. Subramanian, M.V., Hung, H-Y., Dias, J.M., Miner, V.W., Butler, J.H. and Jachetta, J.J., Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol., 1990, 94, 239–244.

    Article  PubMed  CAS  Google Scholar 

  23. Dunwell, J.M., personal communication, 1991.

    Google Scholar 

  24. Secor, J. and Cseke, C., Inhibition of acetyl-CoA carboxylase activity by haloxyfop and tralkoxydim. Plant Physiol., 1988, 86, 10–12.

    Article  PubMed  CAS  Google Scholar 

  25. Jacobson, A., Shimabukuro, R.J. and McMichael, C., Response of wheat and oat seedlings to root-applied diclofop-methyl and 2,4-dichlorophenoxyacetic acid. Pestic. Biochem. Physiol., 1985, 24, 61–67.

    Article  CAS  Google Scholar 

  26. Gronwald, J.W., Parker, W.B., Somers, D.A., Wyse, D.L., Gengenbach, B.G., Selection for tolerance to graminicide herbicides in maize tissue culture. Brighton Crop Protection Conference-Weeds, 1989, pp. 1217–1224.

    Google Scholar 

  27. Gronwald, J.w., Eberlein, C.B., Betts, K.J., Rosow, K.M., Ehlke, N.J. and Wyse, D.L., Diclofop resistance in a biotype of Italian rye-grass. Plant Physiol., 1989, 89S, 115

    Google Scholar 

  28. Heim, D.R, Roberts, J.L., Pike, P.D. and I.M. Larrinua, A second locus Ixr B1 in Arabidopsis thaliana that confers resistance to the herbicide isoxaben. Plant Physiol., 1990, 92, 858–861.

    Article  PubMed  CAS  Google Scholar 

  29. Heim, D.R, Bjelk, L.A.' and I.M. Larrinua, Isolation and characterization of a dichlobenil resistant mutant of Arabidopsis thaliana. Weed Sci. Soc. Amer. Abst., 1991, 31, 76.

    Google Scholar 

  30. Chamovitz, D., Peeker, I., Sandmann, G., Boger. P. and Hirschberg, J. Cloning a gene coding for norflurazon resistance in Cyanobacteria. Z. Naturforsch., 1990, 45c, 482–486.

    Google Scholar 

  31. Guerineau, F., Brooks, L., Meadows, J., Lucy, A., Robinson, C., and Mullineaux, P., Sulfonamide resistance gene for plant transformation. Plant Mol. Biol., 1990, 15, 127–136.

    Article  PubMed  CAS  Google Scholar 

  32. De Greef, W., Delon, R, De Block, M., Leemans, J. and Botterman, J., Evaluation of herbicide resistance in transgenic crops under field conditions. Bio/Technology, 1989, 7, 61–64.

    Article  CAS  Google Scholar 

  33. Donn, G., Tischer, E., Smith, J.A and Goodman, H. M., Herbicide resistant alfalfa cells; an example of gene amplification in plants. J. Mol. Appl. Gen., 1984, 2, 621–635.

    CAS  Google Scholar 

  34. D’Hulluin, K, Botterman, J. and De Greef, W., Engineering of herbicide-resistant alfalfa and evaluation under field conditions. Crop Sci., 1989, 30, 866–871.

    Article  Google Scholar 

  35. Botterman, J., personal communication, 1991.

    Google Scholar 

  36. Streber, W. R,. and Pohlenz, H.B., personal communication, 1991.

    Google Scholar 

  37. Stalker, D.M., McBride, K.E. and Malyj, L.D., Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science, 1988, 242, 419–423.

    Article  PubMed  CAS  Google Scholar 

  38. Pelissier, B., Delon, R, Lutz, J.P., Borrod, G., Spicca, G., Leroux, B., Sailland, A, Lebrun, M., Bouchefra, O., Pallett, K and Freyssinet, G., Use of bromoxynil for weed control on transgenic tobacco fields, Proc. Corestra Meeting, Thessalaniki, 1990. (in press).

    Google Scholar 

  39. Stalker, D.M. personal communication, 1991.

    Google Scholar 

  40. Sanders, G.E., Cobb, A.H. and Pallett, K.E., PhYSiological changes in Matricaria inodora following ioxynil and bromoxynil treatment. Z. Naturforsch., 1983, 39c, 505–509.

    Google Scholar 

  41. Gressel, J. and Segel, L. A., Interrelating factors controlling the rate of appearance of resistance: the outlook to the future. In Herbicide Resistance in Plants, eds. H.M. LeBaron and J. Gressel, Wiley, New York, 1982, pp. 325–347.

    Google Scholar 

  42. O’Keefe, D.P., Romesser, J.A and Leto, KJ., Plant and bacterial cytochromes P-450: involvement in herbicide metabolism. In Phytochemical Effects of Environmental compounds, eds. J.A. Saunders, L.K Channing and E.E. Conn, Plenum, New York, 1987, pp. 151–173.

    Google Scholar 

  43. Streber, W.R and Willmitzer, L., Transgenic tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D. Bio/Technology., 1989, 7, 811–816.

    Article  CAS  Google Scholar 

  44. Lyon, B.R, Llewellyn, D,J., Huppatz, J.L., Dennis, E.S. and Peacock, W.J., Expression of a bacterial gene in transgenic tobacco plants confers resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Plant Mol. Biol., 1989, 13, 533–540.

    Article  PubMed  CAS  Google Scholar 

  45. Davis, D.G., Olson, P.A, Swanson, H.R and Frear, D.S., Metabolism of the herbicide metribuzin by an N-glucosyltransferase from tomato cell cultures. Plant Sci., 1991, 74, 73–80.

    Article  CAS  Google Scholar 

  46. Dumer, J., Thiel, A. and Boger, P., Phenolic herbicides: correlation between lipophilicity and increased inhibitor sensitivity in thylakoids from higher plant mutants. Z. Naturforsch., 1986, 41c, 881–884.

    Google Scholar 

  47. Kroath, H., Susani, M. and Zohner, A., Genetic engineering of resistance to the phenylpyridazine herbicide, pyridate. Proc. EWRS Symp. Factors Affecting Herbicidal Activity and Selectivity, 1988, pp. 343–348.

    Google Scholar 

  48. F. Cannon, personal communication, 1988.

    Google Scholar 

  49. Steward, G.R. and Press, M.C., The physiology and biochemistry of parasitic angiosperms., Annu. Rev. Plant Physiol. Plant Mol. Biol., 1990, 41, 127–151.

    Article  Google Scholar 

  50. Foy, C.L., Jain, R. and Jacobsohn, R., Recent approaches for chemical control of broomrape (Orobanche spp.). Rev. Weed Sci., 1989, 4, 123–152.

    CAS  Google Scholar 

  51. Steward, G., Witchweed: a parasitic weed of grain crops. Outlook Agric., 1990, 19, 115–117.

    Google Scholar 

  52. Hartman, G.L. and Tanimonure, O.A., Seed populations of Striga species in Nigeria. Plant Dis., 1991, 75, 494–496.

    Article  Google Scholar 

  53. Parker, C., Protection of crops against parasitic weeds. Crop Prot., 1991, 10, 6–21.

    Article  CAS  Google Scholar 

  54. McNally, S.F. and Steward, G.R., Inorganic nitrogen assimilation by parasitic angiosperms. In, Parasitic Flowering Plants. eds. C. H. Weber, and W. Forstreuter, Proc. of the 4th ISPFP, Marburg, 1987, pp. 539–546.

    Google Scholar 

  55. Wolf, S.J. and Timko, M.P., In vitro root culture: a novel approach to study the obligate parasite Striga asiatica (L.) Kuntze. Plant Sci., 1991, 73, 233–242.

    Article  CAS  Google Scholar 

  56. Dawson, J.H., Dodder (Cuscuta spp.) control in newly seeded alfalfa (Medicago sativa) with glyphosate. Weed Technol., 1990, 4, 880–885.

    CAS  Google Scholar 

  57. McNally, S.F., Ortebamjo, T.O., Hirel, B. and Steward, G.R., Glutamine synthetase isoenzymes of Striga hermonthica and other angiosperm root parasites. J. Exp. Bot., 1983, 34, 610–619.

    Article  CAS  Google Scholar 

  58. Liu, Z.Q. and Fer, A., Influence d’un parasite (Cuscuta lupuliformis Krock.) sur la redistribution de deux herbicides systemiques appliques sur une legumineuse (Phaseolus aureus Roxb.). C.R. Acad. Sci., Paris, 1990, 311, 333–339.

    CAS  Google Scholar 

  59. Dawson, J.H., Dodder (Cuscuta spp.) control with dinitroaniline herbicides in alfalfa (Medicago sativa). Weed Technol., 1990, 4, 341–348.

    CAS  Google Scholar 

  60. Morrison, I.N., Todd, B.G., and Nawolsky, K.M. Confirmation of trifluralin-resistant green foxtail (Setaria viridis) in Manitoba. Weed Technol., 1989, 3, 544–551.

    CAS  Google Scholar 

  61. Darmency, H. and Pernes, J., Use of wild Setaria viridis(L) Beauv. to improve triazine resistance in cultivated S. italica (L.) by hybridization. Weed Res., 1985, 25, 175–179.

    Article  CAS  Google Scholar 

  62. Goldburg, R., Rissler, J., Shand, H. and Hassebrook, C., Biotechnology’s Bitter Harvest, Environmental Defense Fund, New York, 1990, 73pp.

    Google Scholar 

  63. Moss, S.R. (1991) This volume.

    Google Scholar 

  64. Powles, S.B. (1991) This volume.

    Google Scholar 

  65. Gressel, J., Multiple resistances to wheat selective herbicides: new challenges to molecular biology, Oxford Surv. Plant Mol. Cell Biol., 1988, 5, 195–203.

    CAS  Google Scholar 

  66. Gressel, J., Wheat herbicides: The challenge of emerging resistance, Biotechnology Affiliates, Checkendon/Reading, U.K. 247 pp.

    Google Scholar 

  67. Frear, D.S., Swanson, H.R. and Thalacker, F.W., Induced microsomal oxidation of diclofop, triasulfuron, chlorsulfuron and linuron in wheat. (submitted).

    Google Scholar 

  68. Christopher, J.T., Powles, S.B., Liljegren, D.R. and Holtum, J.A.M., Cross resistance to herbicides in annual ryegrass (Lolium rigidum). 2. Chlorsulfuron resistance involves a wheat like detoxification system. Plant Physiol., 1991, 95, 1036–1043.

    Article  PubMed  CAS  Google Scholar 

  69. Anonymous, A Benefit/Risk Assessment for the Introduction of Herbicide Tolerance Crops in Iowa, Iowa State University, Ames, 1991, 15 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 SCI

About this chapter

Cite this chapter

Gressel, J. (1992). The Needs for New Herbicide-Resistant Crops. In: Denholm, I., Devonshire, A.L., Hollomon, D.W. (eds) Resistance ’91: Achievements and Developments in Combating Pesticide Resistance. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2862-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2862-9_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-886-1

  • Online ISBN: 978-94-011-2862-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics