Skip to main content

Allozyme markers in breeding zone designation

  • Chapter
Population Genetics of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 42))

Abstract

Early studies of allozyme variation in plant populations suggested that allelic frequencies in some loci vary by geography. Since then, the expectation that allozymes might be useful in describing geographic patterns has generally not been borne out by single locus analyses, except on the broadest scale. Multi-locus analyses reveal the converse: canonical correlation analysis of individual, uniformly-spaced genotypes describe statistically-significant, complex patterns with geography. Multi-locus scores in four major species, Abies concolor, Pinus lambertiana, P. ponderosa, and Pseudotsuga menziesii, of the mixed conifer forest in the Sierra Nevada correlate 0.40 or greater with the first canonical vector of a geographical trend surface equation. The different species follow similar patterns by latitude and elevation. In contrast with patterns in the Sierra Nevada, large-scale differentiation is weak (R 2 < 0.20) among populations of Pseudotsuga menziesii in the Coast Ranges and Siskyou Mountains of northern California and southern Oregon, where differentiation may be local. For the purpose of forming zones, we subdivided scores of the first two to four canonical vectors into groups and plotted them as multidimensional contour intervals. Reclassification by discriminant analysis serves as an approximate guide to transfer risks within and among these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, W. T. 1992. Gene dispersal within forest tree populations. This issue (pp. 217–240).

    Chapter  Google Scholar 

  • Adams, T. and Campbell, R. K. 1981. Genetic adaptation and seed source specificity, pp. 78–85. In: Hobbs, S. D. and Helgerson, O. T, (Eds) Reforestation of Skeletal Soils, Forest Res. Lab., Oregon State Univ., Corvallis, OR.

    Google Scholar 

  • Allard, R. W., Babbel, G. R., Clegg, M. T. and Kahler, A. L. 1972. Evidence for coadaptation in Avena barbata. Proc. Nat. Acad. Sci. USA 69: 3043–3048.

    Article  PubMed  CAS  Google Scholar 

  • Archie, J. W., Simon, C. and Martin, A. 1989. Small sample size does decrease the stability of dendrograms calculated from allozyme-frequency data. Evolution 43(3): 678–683.

    Article  Google Scholar 

  • Bergmann, F. 1975. Adaptive acid posphatase polymorpism in conifer seeds. Silvae Genet. 24(5–6): 175–177.

    Google Scholar 

  • Bocquet-Appel, J.-P. and Sokal, R. R.1989. Spatial autocorrelation analysis of trend residuals in biological data. Syst. Zool. 38(4): 333–341.

    Article  Google Scholar 

  • Box, G. E. P. and Draper, N. R. 1987. Empirical Model-building and Response Surfaces. J. Wiley &amp; Sons, New York.

    Google Scholar 

  • Box, G. E. P., Hunter, W. G. and Hunter, J. S. 1978. Statistics for Experimenters. An Introduction to Design, Data Analysis, and Model Building. J. Wiley &amp; Sons, New York.

    Google Scholar 

  • Brown, A. D. H. 1984. Multilocus organization of plant populations, pp. 159–169. In: Wöhrmann, K. and Loeschcke, V. (Eds) Population Biology and Evolution. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Buck, J. M., Adams, R. S., Cone, J., Conkle, M. T., Libby, W. J., Eden, C. J. and Knight, M. J. 1970. California Tree Seed Zones. USDA Forest Service.

    Google Scholar 

  • Campbell, R. K. 1984.Procedures for determining the biological limits of breeding zones in the Pacific Northwest,pp. 24–33.In:Proc.Progeny testing,servicewide genetics workshop,Charleston,SC,December 5–9,1983.USDA Forest Service,Timber Management.

    Google Scholar 

  • Campbell, R. K. 1986. Mapped genetic variation of Douglas-fir to guide seed transfer in southwest Oregon. Silvae Genet. 35(2–3): 85–96.

    Google Scholar 

  • Campbell, R. K. and Sugano, A. J. 1987. Seed zones and breeding zones for sugar pine in southwestern Oregon. USDA Forest Serv., Res. Pap. PNW-RP-383, 18 pp.

    Google Scholar 

  • Campbell, R. K., Pawuk, W. A. and Harris, A. S. 1989. Microgeographic genetic variation of Sitka spruce in southeastern Alaska. Can. J. For. Res. 19:1004–1013.

    Article  Google Scholar 

  • Cavalli-Sforza, L. L. and Edwards, A. W. F. 1967. Phylogenetic analysis: Models and estimation procedures. Evolution 21: 550–570.

    Article  Google Scholar 

  • Conkle, M. T. 1974. Enzyme poymorphism in forest trees, pp. 95–105. In: Proc. third North Amer. for. biol. workshop, Colorado State University, 9–12 Sept., 1974. College of Forestry and Natural Resources, Colorado State University, Fort Collins, CO.

    Google Scholar 

  • Conkle, M. T. and Westfall, R. D. 1984. Evaluating breeding zones for ponderosa pine in California, pp. 89–98. In: Progeny testing, proc. servicewide genetics workshop, Charleston, SC, December 5–9, 1983. USDA Forest Service, Timber Management.

    Google Scholar 

  • Conkle, M. T. and Westfall, R. D. 1987. Douglas-fir isozyme test results. USFS, Pac. SW For. & Range Expt. Stn., Unpublished report to the USFS R-5 Regional Tree Improvement Program, 5 pp.

    Google Scholar 

  • Conkle, M. T. and Westfall, R. D. 1988. White fir report. USFS, Pac. SW For. & Range Expt. Stn., Unpublished report to the USFS R-5 Regional Tree Improvement Program, 13 pp.

    Google Scholar 

  • Dickinson, T., Knowles, P. and Parker, W. H. 1988. Data set congruence in northern Ontario tamarack (Larix laricina, Pinacea). Syst. Bot. 13(3): 442–455.

    Article  Google Scholar 

  • Dorman, K. W.1976. The Genetics and Breeding of Southern Pines. USDA, Agric. Handbook 471, 407 pp.

    Google Scholar 

  • Draper, N. R. and Smith, H. 1966. Applied Regression Analysis. John Wiley & Sons, Inc., New York, 407 pp.

    Google Scholar 

  • Dunn, G. and Everitt, B. S. 1982. An Introduction to Mathematical Taxonomy. Cambridge University Press, Cambridge.

    Google Scholar 

  • Efron, B. 1979. Bootstrap methods: another look at the jacknife. Ann. Stat. 7:1–26.

    Article  Google Scholar 

  • El-Kassaby, Y. A. 1990. Genetic Variation within and among conifer populations: review and evaluation of methods, pp. 59–74. In: Hattemer, H. H., Fineschi, S., Cannata, F. and Malvoti, M. E. (Eds) Biochemical Markers in the Population Genetics of Forest Trees. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Ellstrand, N. C. 1992. Gene flow among seed plant populations. This issue (pp. 241–256).

    Google Scholar 

  • Epperson, B. K. 1992. Spatial structure of genetic variation within populations of forest trees.This issue (pp. 257–278).

    Chapter  Google Scholar 

  • Epperson, B. K. 1990. Spatial patterns of genetic variation within plant populations, pp. 229–253. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates Inc., Sunderland, MA.

    Google Scholar 

  • Falkenhagen, E. R. 1985. Isozyme studies in provenance research of forest trees. Theor. Appl. Genet. 69(4): 335–347.

    Article  CAS  Google Scholar 

  • Feret, P. P. and Bergmann, F. 1976. Gel electrophoresis of proteins and enzymes, pp. 49–77. In: Miksche, J. P. (Ed) Modern Methods in Forest Genetics. Springer-Verlag, New York.

    Google Scholar 

  • Gittins, R. 1968. Trend-surface analysis of ecological data. J. Ecology 56(3): 845–869.

    Article  Google Scholar 

  • Gittins, R. 1985. Canonical Analysis. A Review with Applications in Ecology. Springer-Verlag, New York.

    Google Scholar 

  • Griffin, J. R. and Critchfield, W. B. 1982. The distribution of forest trees in California. USDA For. Serv., Research Pap. PSW-82,118 pp.

    Google Scholar 

  • Guries, R. P. 1984. Genetic variation and population differentiation in forest trees, pp. 119–131. In: Proc. eighth N. Amer. for. biol. workshop, Utah State Univ., Logan, UT, Jul. 30-Aug. 1, 1984. Dept. For Res., Utah State Univ., Logan, UT.

    Google Scholar 

  • Guries, R. P. and Ledig, F. T. 1981. Genetic structure of populations and differentiation in forest trees, pp. 42–47. In: Proc. symposium on isozymes of North American forest trees and forest insects, Berkeley, CA, July 27, 1979. USDA For. Serv. PSW For. & Range Expt. Stn., Gen. Tech. Rep. PSW-48.

    Google Scholar 

  • Hamrick, J. L. and Godt, M. J. W. 1990. Allozyme Diversity in plant species, pp. 43–63. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates Inc., Sunderland, MA.

    Google Scholar 

  • Kempthorne, O. 1969. An Introduction to Genetic Statistics. Iowa State Univ. Press, Ames, IA.

    Google Scholar 

  • Kinloch, B. B., Westfall, R. D. and Forrest, G. I. 1986. Caledonian Scots pine: origins and genetic structure. New Phytol. 104: 703–729.

    Article  Google Scholar 

  • Kitzmiller, J. H. 1976. Tree Improvement Master Plan for the California Region. USDA Forest Service, San Francisco, 123 pp.

    Google Scholar 

  • Kitzmiller, J. H. 1990. Genetic variation and adaptability of Douglas-fir in northwestern California. In: Proc. Joint Mtg. W. For. Genet. Assoc. & IUFRO Working Parties S2.02-05. 06, 12, & 14, Douglas-fir, Contorta Pine, Sitka Spruce, & Abies Breeding & Genetic Resources, Olympia, WA, Aug. 20-21, 1990.

    Google Scholar 

  • Knowles, P. 1985. Comparison of isozyme variation among natural stands and plantations: jack pine and black spruce. Can. J. For. Res. 15: 902–908.

    Article  CAS  Google Scholar 

  • Ledig, F. T. 1988. The conservation of diversity in forest trees. BioSci. 38(7): 471–479.

    Article  Google Scholar 

  • Lee, P. J. 1969. The theory and application of canonical trend surfaces. J. Geology 77(3): 303–318.

    Article  Google Scholar 

  • Loveless, M. D. 1992. Isozyme variation in tropical trees: patterns of genetic organization. This issue (pp. 67-94).

    Google Scholar 

  • Lundkvist, K.1979. Allozyme frequency distributions in four Swedish populations of Norway spruce (Picea abies K.). I. Estimations of genetic variation within and among populations, genetic linkage and a mating system parameter. Hereditas 90: 127–143.

    Article  Google Scholar 

  • Manly, B. F. J. 1986. Multivariate Statistical Methods. A Primer. Chapman and Hall, New York, 159 pp.

    Google Scholar 

  • Merkle, S. A., Adams, W. T. and Campbell, R. K. 1988. Multivariate analysis of allozyme variation patterns in coastal Douglas-fir from southwest Oregon. Can. J. For. Res. 18: 181–187.

    Article  Google Scholar 

  • Millar, C. I., Strauss, S. H., Conkle, M. T. and Westfall, R. D. 1988. Allozyme differentiation and biosystematics in the California closed-cone pines (Subsection Oocarpae Little & Critchfield, Genus Pinus). Syst. Bot. 13(3): 351–370.

    Article  Google Scholar 

  • Millar, C. I. and Westfall, R. D. 1992. Allozyme markers in forest genetic conservation. This issue (pp. 347–371).

    Google Scholar 

  • Mitton, J. B. 1992. The dynamic mating systems of conifers. This issue (pp. 197–216).

    Google Scholar 

  • Mitton, J. B., Linhart, Y. B., Hamrick, J. L. and Beckman, J. S. 1977. Observations on the genetic structure and mating system of ponderosÃ¥ pine in the Colorado Front Range. Theor. Appl. Genet. 51: 5–13.

    Article  Google Scholar 

  • Moran, G. F. and Adams, W. T. 1989. Microgeographical patterns of allozyme differentiation in Douglas-fir from southwest Oregon. For. Sci. 35(1): 3–15.

    Google Scholar 

  • Morrison, D. F. 1990. Multivariate Statistical Methods. McGraw-Hill, New York.

    Google Scholar 

  • Muona, O. 1990. Population genetics in forest tree improvement, pp. 282–298. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates Inc., Sunderland, MA.

    Google Scholar 

  • Namkoong, G. 1969. Nonoptimality of local races, pp. 149–153. In: Proc. tenth south. for. tree improv. conf. Texas For. Serv., Texas A & M Univ. Press, College Sta., TX.

    Google Scholar 

  • Namkoong, G. 1985. Considerations of respect for future forest populations, pp. 117–121. In: Proc. N. Amer. for. commission tree improv, Study Group. The state of the art in forest genetics and breeding. Int. Meeting, Satellite to the IX World Forestry Congress, Mexico City, Jul. 5, 1985.

    Google Scholar 

  • Namkoong, G. 1990. Forest genetics: 2050. The quick and the dead. In: Proc. Joint Mtg. W. For Genet. Assoc. & IUFRO Working Parties S2.02-05. 06, 12, & 14, Douglas-fir, Contorta Pine, Sitka Spruce, & Abies Breeding & Genetic Resources, Olympia, WA, Aug. 20-21, 1990.

    Google Scholar 

  • Namkoong, G. and Kang, H. 1990. Quantitative genetics of forest trees, pp. 139–188. In: Janick, J. (Ed) Plant Breeding Reviews, Vol 4. Timber Press, Portland, OR.

    Google Scholar 

  • Namkoong, G., Kang, H. C. and Brouard, J. S.1988. Tree Breeding: Principles and Strategies. Springer-Verlag, New York.

    Book  Google Scholar 

  • Neale, D. B. and Adams, W. T. 1985. Allozyme and mating-system variation in balsam fir (Abies balsamea) across a continuous elevational transect. Can. J. Bot. 63(2): 2448–2453.

    Article  Google Scholar 

  • Neale, D. B., Devey, M. E., Jermstad, K. D., Ahuja, M. R., Alosi, M.C. and Marshall, K. A. 1992. Use of DNA markers in forest tree improvement research. This issue (pp. 391 –407).

    Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    PubMed  CAS  Google Scholar 

  • Rehfeldt, G. E. 1986. Adaptive variation in Pinus ponderosa from Intermountain regions. I. Snake and Salmon River Basins. For. Sci. 32(1): 79-92.

    Google Scholar 

  • Rehfeldt, G. E. 1990a. Gene resource management: Using models of genetic variation in silviculture, pp. 31–44. In: Proc. genetics/silviculture workshop, Wenatchee, WA. Aug 27–31, 1990, USDA Forest Service.

    Google Scholar 

  • Rehfeldt, G. E. 1990b. Genetic differentiation among populations of Pinus ponderosa from the upper Colorado River Basin. Bot. Gaz. 151(1): 125-137.

    Article  Google Scholar 

  • SAS Institute Inc. 1985. SAS® User’s Guide: Statistics. SAS Institute Inc., Cary, NC, 956 pp.

    Google Scholar 

  • Smouse, P. E. and Williams, R. C. 1982. Multivariate analysis of HLA-disease associations,Biometrics 38(3): 757–768.

    Article  PubMed  CAS  Google Scholar 

  • Smouse, P. E., Spielman, R. S. and Park, M. H. 1982. Multiple-locus allocation of individuals to groups as a function of the genetic variation within and differences among human populations. Am. Nat. 119(4): 445–463.

    Article  Google Scholar 

  • Spielman, R. S. and Smouse, P. E. 1976. Multivariate classification of human populations. I.Allocation of Yanomama Indians to villages. Am. J. Hum. Genet. 28(4): 317–331.

    PubMed  CAS  Google Scholar 

  • Swofford, D. L. 1981. On the utility of the distance Wagner procedure, pp. 25–43. In:Funk, V. A. and Brooks, D. R. (Eds) Advances in Cladistics. Allen Press, Lawrence, KS.

    Google Scholar 

  • Thorpe, R. S. 1985. Clines: Character number and the multivariate analysis of simple patterns of geographic variation. Biol. J. Linn. Soc. 26(3): 201–214.

    Article  Google Scholar 

  • Thorpe, R. S. 1987. Complex clines: the predictivity of complicated patterns of geographic variation portrayed by multivariate analysis. Biol. J. Linn. Soc. 31: 75–88.

    Article  Google Scholar 

  • Tigerstedt, P. M. A. 1973. Studies on isozyme variation in marginal and central populations of Picea abies. Hereditas 75:47–60.

    Article  PubMed  CAS  Google Scholar 

  • Wartenberg, D. 1985. Canonical trend surface analysis: A method for describing geographic patterns. Syst. Zool. 34(3): 259–279.

    Article  Google Scholar 

  • Weir, B. S. 1990. Genetic Data Analysis. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Westfall, R. D. 1991. Developing seed transfer zones. In: Fins, L. and Friedman, S. T. (Eds) Manual of Quantitative Forest Genetics (in press).

    Google Scholar 

  • Williams, B. K. and Titus, K. 1988. Assessment of sampling stability in ecological applications of discriminant analysis. Ecology 69(4): 1275–1285.

    Article  Google Scholar 

  • Yeh, F. C., Cheliak, W. M., Dancik, B. P., Illingworth, K. Trust, D. C. and Pryhitka, B. A.1985. Population differentiation in lodgepole pine, Pinus contorta spp. latifolia: a discriminant analysis of allozyme variation. Can. J. Genet. Cytol. 27: 210–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Westfall, R.D., Conkle, M.T. (1992). Allozyme markers in breeding zone designation. In: Adams, W.T., Strauss, S.H., Copes, D.L., Griffin, A.R. (eds) Population Genetics of Forest Trees. Forestry Sciences, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2815-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2815-5_15

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5251-1

  • Online ISBN: 978-94-011-2815-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics