Skip to main content

Rigid Alkane-Bridged Donor-Acceptor Systems as Tools for the Investigation of Solvent-, Distance-, and Conformation-Effects in Electron Transfer Processes

  • Chapter
Photoprocesses in Transition Metal Complexes, Biosystems and Other Molecules. Experiment and Theory

Part of the book series: NATO ASI Series ((ASIC,volume 376))

Abstract

Several series of D(onor)-bridge-A(cceptor) systems have been developed in which a rigid alkane-bridge maintains a well defined distance and relative orientation of the electron donor-acceptor pair attached. For a given length of the bridge the effect of the solvating power of the medium on the rate of photoinduced intramolecular charge separation was studied as a function of structural variations at the D and/or A sites. The results of these studies are discussed in the context of current models for the thermodynamics and kinetics of electron transfer processes. It is shown that general and simple design criteria can be fonnulated, which define the properties of a D/A pair that is tuned to realize optimally fast electron transfer, in any solvent. across a bridge of a given length. The influence of the length and configuration of the alkane bridges on the rate of photoinduced charge separation as well as thennal recombination was investigated. Independently the ability of the bridges to mediate electronic coupling was studied in an experimental (PES, ETS) and theoretical investigation of bridged dienes. For the rate of photoinduced charge separation a very strong correlation with the structure dependence of the electronic coupling was observed. This demonstrates the importance of through-sigmabond interaction as a coupling mechanism for electron transfer, thereby stressing the decisive role of the intervening medium in mediating long-range electron transfer processes. Interestingly, charge recombination appeared to be equally responsive to the length but less responsive to the configuration of the bridge, and not at all responsive to temperature. The latter is attributed to a dominant contribution of nuclear tunneling. typical for electron transfer in the ′inverted region′.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. a) M.A. Fox, M. Chanon, (Eds.): ″Photoinduced Electron Transfer″, Elsevier, Amsterdam, (1988). b) D. Gust, T.A. Moore, (Eds.): ″Covalently Linked Donor-Acceptor Species for Mimicry of Photosynthetic Electron and Energy Transfer″, Tetrahedron Symposium-in-Print No. 39, Tetrahedron 45 (1989).

    Google Scholar 

  2. D. Rehm, A. Weller, Ber. Bunsenges. Phys. Chem. 73 (1969) 834.

    CAS  Google Scholar 

  3. A. Weller, Z. Phys. Chem. 133 (1982) 93.

    Article  CAS  Google Scholar 

  4. P. Pasman, G.F. Mes, N.W. Koper, J.W. Verhoeven, J. Am. Chem. Soc. 107 (1985) 5839.

    Article  CAS  Google Scholar 

  5. J. Kroon, J.W. Verhoeven, M.N. Paddon-Row, A.M. Oliver, Angew. Chem., (1991) in press.

    Google Scholar 

  6. H. Oevering, M.N. Paddon-Row, M. Heppener, A.M. Oliver, E. Cotsaris, J.W. Verhoeven, N.S. Hush, J. Am. Chem. Soc. 109 (1987) 3258.

    Article  CAS  Google Scholar 

  7. N.S. Hush, Trans. Faraday Soc. 57 (1961) 557.

    Article  CAS  Google Scholar 

  8. R.A. Marcus, J. Chem. Phys. 43 (1965) 679.

    Article  CAS  Google Scholar 

  9. H. Oevering, J.W. Verhoeven, M.N. Paddon-Row, J.M. Warman, Tetrahedron 45 (1989) 4751.

    Article  CAS  Google Scholar 

  10. Under barrierless conditions the solvent reorgnization energy and the temperature exert only weak (λ-0.5 and T-0.5) influence on the rate.

    Google Scholar 

  11. N.S. Hush, M.N. Paddon-Row, E. Cotsaris, H. Oevering, J.W. Verhoeven, M. Heppener, Chem. Phys. Lett. 117 (1985) 8.

    Article  CAS  Google Scholar 

  12. J.M. Warman, M.P. de Haas, M.N. Paddon-Row, E. Cotsaris, N.S. Hush, H. Oevering, J.W. Verhoeven, Nature (London) 320 (1986) 615.

    Article  CAS  Google Scholar 

  13. J. M. Wannan. K.J. Smit. M.P. de Haas, S.A. Jonker, M.N. Paddon-Row. A.M. 297 Oliver, J. Kroon, H. Oevering, J.W. Verhoeven, J. Phys. Chem. 95 (1991) 1979.

    Google Scholar 

  14. J.W. Verhoeven. J. Kroon, M.N. Paddon-Row, A.M. Oliver, in: ″Photoconversion Processes for Energy and Chemicals″, p. 100–108, D.O. Hall and G. Grassi (Eds.). Elsevier, London (1989).

    Google Scholar 

  15. J.W. Verhoeven, Pure & Appl. Chem. 62 (1990) 1585.

    Article  CAS  Google Scholar 

  16. J.R. Miller, J.V. Beitz, R.K. Huddleston, J. Am. Chem. Soc. 106 (1984) 5057.

    Article  CAS  Google Scholar 

  17. R. Hoffmann, A. Imamura, W.J. Hehre, J. Am. Chem. Soc. 90 (1968) 1499.

    Article  CAS  Google Scholar 

  18. R. Hoffmann, Accounts Chem. Res. 4 (1971) 1.

    Article  CAS  Google Scholar 

  19. M.N. Paddon-Row, Accounts Chem. Res. 20 (1982) 245.

    Article  Google Scholar 

  20. M.N. Paddon-Row, K.D. Jordan in: ″Modem Models of Bonding and Delocalization″. chap. 3, J. F. Liebman, A. Greenberg (Eds.). VCH Publishers, New York, (1988).

    Google Scholar 

  21. J.W. Verhoeven, P. Pasman. Tetrahedron 37 (1981) 943.

    Article  CAS  Google Scholar 

  22. J. Kroon, A.M. Oliver. M.N. Paddon-Row, J.W. Verhoeven, Recl. Trav. Chim. Pays-Bas 107 (1988) 509.

    Article  CAS  Google Scholar 

  23. A.M. Oliver, D.C. Craig, M.N. Paddon-Row, J. Kroon. J.W. Verhoeven. Chem. Phys. Lett. 150 (1988) 366.

    Article  CAS  Google Scholar 

  24. P. Pasman, J.W. Verhoeven, Th. J. De Boer, Tetrahedron Lett. (1977) 207.

    Google Scholar 

  25. M.N. Paddon-Row, H.K. Patney, R.S. Brown, K.N. Houk. J. Am. Chem. Soc. 103 (1981) 5575.

    Article  CAS  Google Scholar 

  26. F.S. Jørgensen, M.N. Paddon-Row, H.K. Patney. J. Chem. Soc. Chem. Commun. (1983) 573.

    Google Scholar 

  27. M.N. Paddon-Row, H.K. Patney, B. Peel, G.D. Willett. J. Chem. Soc. Chem. Commun. (1984) 564.

    Google Scholar 

  28. M.N. Paddon-Row, E. Cotsaris, H.K. Patney. Tetrahedron 42 (1986) 2279.

    Article  Google Scholar 

  29. W. Grimme, L. Schumachers, R. Gleiter, K. Gubemator, Angew. Chem. Int. Ed. Engl. 20 (1981) 168.

    Article  Google Scholar 

  30. V. Balaji, K.D. Jordan, P.D. Burrow, M.N. Paddon-Row, H.K. Patney, J. Am. Chem. Soc. 104 (1982) 6849.

    Article  CAS  Google Scholar 

  31. V. Balaji, L. Ng. K.D. Jordan. M.N. Paddon-Row, H.K. Patney, J.Am. Chem. Soc. 109 (1987) 6957.

    Article  CAS  Google Scholar 

  32. M.N. Paddon-Row, J.W. Verhoeven, New J. Chem. 15 (1991) 107.

    CAS  Google Scholar 

  33. T. Koopmans, Physica 1 (1934) 104.

    Article  Google Scholar 

  34. R.A. Marcus, J. Chem. Phys. 24 (1956) 966.

    Article  CAS  Google Scholar 

  35. R.A. Marcus, J. Chem. Phys. 43 (1965) 679.

    Article  CAS  Google Scholar 

  36. R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811 (1985) 265.

    Article  CAS  Google Scholar 

  37. N.S. Hush, Trans. Farad. Soc. 57 (1961) 155.

    Article  Google Scholar 

  38. N.S. Hush. Coord. Chem. Rev. 64 (1985) 135.

    Article  CAS  Google Scholar 

  39. H.M. McConnell, J. Chem. Phys. 35 (1961) 508.

    Article  CAS  Google Scholar 

  40. R.M. Hermant, N.A.C. Bakker. T. Scherer, B. Krijnen. J.W. Verhoeven. J. Am. Chem. Soc. 112 (1990) 1214.

    Article  CAS  Google Scholar 

  41. M.N. Paddon-Row, A.M. Oliver, J.M. Warman, K.J. Smit. M.P. de Haas. H. Oevering. J.W. Verhoeven. J. Phys. Chem. 92 (1988) 6958.

    Article  CAS  Google Scholar 

  42. M.P. de Haas. J.M. Warman. Chem. Phys. 73 (1982) 35.

    Article  Google Scholar 

  43. H. Oevering, dissertation, University of Amsterdam (1988).

    Google Scholar 

  44. T. Kakitani, N. Mataga. J. Phys. Chem. 90 (1986) 993.

    Article  CAS  Google Scholar 

  45. A. Yoshimori, T. Kakitani, Y. Enomoto, N. Mataga. J. Phys. Chem. 93 (1989) 8316.

    Article  CAS  Google Scholar 

  46. A.D. Joran, B.A. Leland, P.M. Felker, A.H. Zewail, J.J. Hopfield, P.B. Dervan, Nature (London) 327 (1987) 508.

    Article  CAS  Google Scholar 

  47. J.R. Miller, J.V. Beitz, R.K. Huddleston, J. Am. Chem. Soc. 106 (1984) 5057.

    Article  CAS  Google Scholar 

  48. KJ. Smit, J.M. Warman, M.P. de Haas, M.N. Paddon-Row, A.M. Oliver, Chem. Phys. Lett. 152 (1988) 177.

    Article  CAS  Google Scholar 

  49. N. Liang, J.R. Miller, G.L. Closs. J. Am. Chem. Soc 112 (1990) 5353.

    Article  CAS  Google Scholar 

  50. I.R. Gould. J.E. Moser. D. Ege, S. Farid, J. Am. Chem. Soc. 110 (1988) 1991.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verhoeven, J.W., Paddon-Row, M.N., Warman, J.M. (1992). Rigid Alkane-Bridged Donor-Acceptor Systems as Tools for the Investigation of Solvent-, Distance-, and Conformation-Effects in Electron Transfer Processes. In: Kochanski, E. (eds) Photoprocesses in Transition Metal Complexes, Biosystems and Other Molecules. Experiment and Theory. NATO ASI Series, vol 376. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2698-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2698-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5195-8

  • Online ISBN: 978-94-011-2698-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics