Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 409))

Abstract

The aim of this paper is to provide a general introduction to the problem of time in quantum gravity. This problem originates in the fundamental conflict between the way the concept of ‘time’ is used in quantum theory, and the role it plays in a diffeomorphism-invariant theory like general relativity. Schemes for resolving this problem can be sub-divided into three main categories: (I) approaches in which time is identified before quantising; (II) approaches in which time is identified after quantising; and (III) approaches in which time plays no fundamental role at all. Ten different specific schemes are discussed in this paper which also contain an introduction to the relevant parts of the canonical decomposition of general relativity.

Lectures presented at the NATO Advanced Study Institute “Recent Problems in Mathematical Physics”, Salamanca, June 15–27, 1992.

Research supported in part by SERC grant GR/G60918.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, A. (1990), ‘Identifying decohering paths in closed quantum systems’. preprint.

    Google Scholar 

  • Albrecht, A. (1991), ‘Investigating decoherence in a simple system’. preprint.

    Google Scholar 

  • Albrecht, A. (1992), Two perspectives on a decohering spin, in J. Halliwell, J. Perez Mercader & W. Zurek, eds, ‘Physical Origins of Time Asymmetry’, Cambridge University Press, Cambridge.

    Google Scholar 

  • Alvarez, E. (1989), ‘Quantum gravity: an introduction to some recent results’, Rev. Mod. Phys. 61, 561 - 604.

    Article  ADS  Google Scholar 

  • Arnowitt, R., Deser, S. & Misner, C. (1959a), ‘Dynamical structure and definition of energy in general relativity’, Phys. Rev. 116, 1322–1330.

    Article  MathSciNet  ADS  Google Scholar 

  • Arnowitt, R., Deser, S. & Misner, C. (1959b), ‘Quantum theory of gravitation: General formalism and linearized theory’, Phys. Rev. 113, 745 - 750.

    Article  ADS  MATH  Google Scholar 

  • Arnowitt, R., Deser, S. & Misner, C. (1960a), ‘Canonical variables for general relativity’, Phys. Rev. 117, 1595–1602.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Arnowitt, R., Deser, S. & Misner, C. (1960b), ‘Consistency of the canonical reduction of general relativity’, J. Math. Phys. 1, 434 - 439.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Arnowitt, R., Deser, S. & Misner, C. (1960c), ‘Energy and the criteria for radiation in general relativity’, Phys. Rev. 118, 1100–1104.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Arnowitt, R., Deser, S. & Misner, C. (1960d), ‘Finite self-energy of classical point particles’, Phys. Rev. Lett. 4, 375–377.

    Article  ADS  Google Scholar 

  • Arnowitt, R., Deser, S. & Misner, C. (1961a), ‘Coordinate invariance and energy expressions in general relativity’, Phys. Rev. 122, 997–1006.

    Article  MathSciNet  ADS  Google Scholar 

  • Arnowitt, R., Deser, S. & Misner, C. (1961b), ‘Wave zone in general relativity’, Phys. Rev. 121, 1556–1566.

    Article  MathSciNet  ADS  Google Scholar 

  • Arnowitt, R., Deser, S. & Misner, C. (1962), The dynamics of general relativity, in L. Witten, ed., ‘Gravitation: An Introduction to Current Research’, Wiley, New York, pp. 227–265.

    Google Scholar 

  • Ashtekar, A. (1986), ‘New variables for classical and quantum gravity’, Phys. Rev. Lett. 57, 2244–2247.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A. (1987), ‘New Hamiltonian formulation of general relativity’, Phys. Rev. D36, 1587–1602.

    MathSciNet  ADS  Google Scholar 

  • Ashtekar, A. (1991), Lectures on Non-Perturbative Canonical Gravity, World Scientific Press, Singapore.

    MATH  Google Scholar 

  • Ashtekar, A. & Stachel, J., eds (1991), Conceptual Problems of Quantum Gravity, Birkhäuser, Boston.

    MATH  Google Scholar 

  • Baierlein, R., Sharp, D. Si Wheeler, J. (1962), ‘Three-dimensional geometry as carrier of information about time’, Phys. Rev. 126, 1864–1865.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Banks, T. (1985), ‘TCP, quantum gravity, the cosmological constant and all that’, Nucl. Phys. B249, 332–360.

    Article  ADS  Google Scholar 

  • Barbour, J. (1990), ‘Time, gauge fields, and the Schrädinger equation in quantum cosmology’. Preprint.

    Google Scholar 

  • Barbour, J. & Smolin, L. (1988), ‘Can quantum mechanics be sensibly applied to the universe as a whole?’. Yale University preprint.

    Google Scholar 

  • Barvinsky, A. (1991), ‘Unitarity approach to quantum cosmology’. University of Alberta preprint.

    Google Scholar 

  • Bergmann, P. & Komar, A. (1972), ‘The coordinate group of symmetries of general relativity’, Int. J. Mod. Phys. 5, 15–28.

    MathSciNet  Google Scholar 

  • Blencowe, M. (1991), ‘The consistent histories interpretation of quantum fields in curved spacetime’, Ann. Phys. (NY) 211, 87–111.

    Article  MathSciNet  ADS  Google Scholar 

  • Blyth, W. Si Isham, C. (1975), ‘Quantisation of a Friedman universe filled with a scalar field’, Phys. Rev. D11, 768–778.

    MathSciNet  ADS  Google Scholar 

  • Bohr, N. & Rosenfeld, L. (1933), ‘Zur frage der messbarkeit der elektromagnetischen feldgrossen’, Kgl. Danek Vidensk. Selsk. Math.-fys. Medd. 12, 8.

    Google Scholar 

  • Bohr, N. & Rosenfeld, L. (1978), On the question of the measurability of electromagnetic field quantities (English translation), in R. Cohen & J. Stachel, eds, ‘Selected Papers by Léon Rosenfeld’, Reidel, Dordrecht.

    Google Scholar 

  • Brout, R. (1987), ‘On the concept of time and the origin of the cosmological temperature’, Found. Phys. 17, 603 - 619.

    Article  MathSciNet  ADS  Google Scholar 

  • Brout, R. & Venturi, G. (1989), ‘Time in semiclassical gravity’, Phys. Rev. D39, 2436–2439.

    ADS  Google Scholar 

  • Brout, R., Horowitz, G. & Wiel, D. (1987), ‘On the onset of time and temperature in cosmology’, Phys. Lett. B192, 318–322.

    ADS  Google Scholar 

  • Brown, J. & York, J. (1989), ‘Jacobi’s action and the recovery of time in general relativity’, Phys. Rev. D40, 3312–3318.

    MathSciNet  ADS  Google Scholar 

  • Caldeira, A. & Leggett, A. (1983), ‘Path integral approach to quantum Brownian motion’, Physica Al21, 587–616.

    MathSciNet  ADS  Google Scholar 

  • Carlip, S. (1990), ‘Observables, gauge invariance, and time in 2 + 1 dimensional quantum gravity’, Phys. Rev. D42, 2647–2654.

    MathSciNet  ADS  Google Scholar 

  • Carlip, S. (1991), Time in 2 + 1 dimensional quantum gravity, in ‘Proceedings of the Banff Conference on Gravitation, August 1990’.

    Google Scholar 

  • Castagnino, M. (1988), ‘Probabilistic time in quantum gravity’, Phys. Rev. D39, 2216–2228.

    MathSciNet  ADS  Google Scholar 

  • Coleman, S. (1988), ‘Why is there something rather than nothing: A theory of the cosmological constant’, Nucl. Phys. B310, 643 - 668.

    Article  ADS  Google Scholar 

  • Collins, P. & Squires, E. (1992), ‘Time in a quantum universe’. In press, Foundations of Physics.

    Google Scholar 

  • Deutsch, D. (1990), ‘A measurement process in a stationary quantum system’. Oxford University preprint.

    Google Scholar 

  • DeWitt, B. (1962), The quantization of geometry, in L. Witten, ed., ‘Gravitation: An Introduction to Current Research’, Wiley, New York.

    Google Scholar 

  • DeWitt, B. (1965), Dynamical Theory of Groups and Fields, Wiley, New York.

    MATH  Google Scholar 

  • DeWitt, B. (1967a), ‘Quantum theory of gravity. I. The canonical theory’, Phys. Rev. 160, 1113–1148.

    Article  ADS  MATH  Google Scholar 

  • DeWitt, B. (1967b), ‘Quantum theory of gravity. II. The manifestly covariant theory’, Phys. Rev. 160, 1195–1238.

    Article  ADS  Google Scholar 

  • DeWitt, B. (1967c), ‘Quantum theory of gravity. III. Applications of the covariant theory’, Phys. Rev. 160, 1239–1256.

    Article  ADS  Google Scholar 

  • Dirac, P. (1958a), ‘Generalized Hamiltonian dynamics’, Proc. Royal Soc. of London A246, 326–332.

    Article  MathSciNet  ADS  Google Scholar 

  • Dirac, P. (1958b), ‘The theory of gravitation in Hamiltonian form’, Proc. Royal Soc. of London A246, 333–343.

    Article  MathSciNet  ADS  Google Scholar 

  • Dirac, P. (1965), Lectures on Quantum Mechanics, Academic Press, New York.

    Google Scholar 

  • Dowker, H. & Halliwell, J. (1992), ‘The quantum mechanics of history: The decoherence functional in quantum mechanics’, Phys. Rev.

    Google Scholar 

  • Duff, M. (1981), Inconsistency of quantum field theory in a curved spacetime, in C. Isham, R. Penrose &D. Sciama, eds, ‘Quantum Gravity 2: A Second Oxford Symposium’, Clarendon Press, Oxford, pp. 81–105.

    Google Scholar 

  • Earman, J. & Norton, J. (1987), ‘What price spacetime substantialism?’, Brit. Jour. Phil. Science 38, 515–525.

    Article  MathSciNet  Google Scholar 

  • Fredenhagen, K. & Haag, R. (1987), ‘Generally covariant quantum field theory and scaling limits’, Comm. Math. Phys 108, 91–115.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Englert, F. (1989), ‘Quantum physics without time’, Phys. Lett. B228, 111–114.

    MathSciNet  ADS  Google Scholar 

  • Eppley, K. & Hannah, E. (1977), ‘The necessity of quantizing the gravitational field’, Found. Phys. 7, 51–68.

    Article  ADS  Google Scholar 

  • Fischer, A. & Marsden, J. (1979), The initial value problem and the dynamical formulation of general relativity, in S. Hawking & W. Israel, eds, ‘General Relativity: An Einstein Centenary Survey’, Cambridge University Press, Cambridge, pp. 138–211.

    Google Scholar 

  • Friedman, J. Si Higuchi, A. (1989), ‘Symmetry and internal time on the superspace of asymptotically flat geometries’, Phys. Rev. D41, 2479–2486.

    MathSciNet  ADS  Google Scholar 

  • Fulling, S. (1990), ‘When is stability in the eye of the beholder? Comments on a singular initial value problem for a nonlinear differential equation arising in semiclassical cosmology’, Phys. Rev. D42, 4248 - 4250.

    MathSciNet  ADS  Google Scholar 

  • Gell-Mann, M. (1987), ‘Superstring theory—closing talk at the 2nd Nobel Symposium on Particle Physics’, Physica Scripta T15, 202–209.

    Article  MathSciNet  ADS  Google Scholar 

  • Gell-Mann, M. Si Hartle, J. (1990a), Alternative decohering histories in quantum mechanics, in K. Phua Si Y. Yamaguchi, eds, ‘Proceedings of the 25th International Conference on High Energy Physics, Singapore, August, 2–8, 1990’, World Scientific, Singapore.

    Google Scholar 

  • Gell-Mann, M. Si Hartle, J. (1990b), Quantum mechanics in the light of quantum cosmology, in S. Kobayashi, H. Ezawa, Y. Murayama & S. Nomura, eds, ’Proceedings of the Third International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology’, Physical Society of Japan, Tokyo, pp. 321–343.

    Google Scholar 

  • Gell-Mann, M. Si Hartle, J. (1990c), Quantum mechanics in the light of quantum cosmology, in W. Zurek, ed., ‘Complexity, Entropy and the Physics of Information, SFI Studies in the Science of Complexity, Vol. VIII’, Addison-Wesley, Reading, pp. 425–458.

    Google Scholar 

  • Gell-Mann, M. Si Hartle, J. (1992), ‘Classical equations for quantum systems’. UCSB preprint UCSBTH-91–15.

    Google Scholar 

  • Gerlach, U. (1969), ‘Derivation of the ten Einstein field equations from the semiclassical approximation to quantum geometrodynamics’, Phys. Rev. 117, 1929–1941.

    Article  ADS  Google Scholar 

  • Giddings, S. Si Strominger, A. (1988), ‘Baby universes, third quantization and the cosmological constant’, Nucl. Phys. B231, 481–508.

    Google Scholar 

  • Greensite, J. (1990), ‘Time and probability in quantum cosmology’, Nucl. Phys. B342, 409–429.

    Article  MathSciNet  ADS  Google Scholar 

  • Greensite, J. (1991a), ‘Ehrenfests’ principle in quantum-gravity’, Nucl. Phys. B351, 749–766.

    Article  MathSciNet  ADS  Google Scholar 

  • Greensite, J. (1991b), ‘A model of quantum gravitational collapse’, Int. J. Mod. Phys. A6, 2693–2706.

    ADS  Google Scholar 

  • Griffiths, R. (1984), ‘Consistent histories and the interpretation of quantum mechanics’, J. Stat. Phys. 36, 219–272.

    Article  ADS  MATH  Google Scholar 

  • Groenwold, H. (1946), ‘On the principles of elementary quantum mechanics’, Physica 12, 405–460.

    Article  MathSciNet  ADS  Google Scholar 

  • Hajicek, P. & Kuchar, K. (1990a), ‘Constraint quantization of parametrized relativistic gauge systems in curved spacetimes’, Phys. Rev. D41, 1091–1104.

    MathSciNet  ADS  Google Scholar 

  • Hajicek, P. & Kuchaf, K. (1990b), ‘Transversal affine connection and quantisation of constrained systems’, J. Math. Phys. 31, 1723–1732.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hâjfcek, P. (1986), ‘Origin of nonunitarity in quantum gravity’, Phys. Rev. D34, 1040–1048.

    ADS  Google Scholar 

  • Hâjfcek, P. (1988), ‘Reducibility of parametrised systems’, Phys. Rev. D38, 3639–3647.

    ADS  Google Scholar 

  • Hâjfcek, P. (1989), ‘Topology of parametrised systems’, J. Math. Phys. 20, 2488–2497.

    Article  Google Scholar 

  • Hâjfcek, P. (1990a), ‘Dirac quantisation of systems with quadratic constraints’, Class. Quan. Gray. 7, 871–886.

    Article  ADS  Google Scholar 

  • Hâjfcek, P. (1990b), ‘Topology of quadratic super-Hamiltonians’, Class. Quan. Gray. 7, 861–870.

    Article  ADS  Google Scholar 

  • Hâjfcek, P. (1991), ‘Comment on ‘Time in quantum gravity: An hypothesis“, Phys. Rev. D44, 1337–1338.

    ADS  Google Scholar 

  • Halliwell, J. (1987), ‘Correlations in the wave function of the universe’, Phys. Rev. D36, 3626–3640.

    MathSciNet  ADS  Google Scholar 

  • Halliwell, J. (1988), ‘Derivation of the Wheeler-DeWitt equation from a path integral for minisuperspace models’, Phys. Rev. D38, 2468–2481.

    MathSciNet  ADS  Google Scholar 

  • Halliwell, J. (1989), ‘Decoherence in quantum cosmology’, Phys. Rev. D39, 2912–2923.

    MathSciNet  ADS  Google Scholar 

  • Halliwell, J. (1990), ‘A bibliography of papers on quantum cosmology’, Int. J. Mod. Phys. A5, 2473–2494.

    MathSciNet  ADS  Google Scholar 

  • Halliwell, J. (1991a), Introductory lectures on quantum cosmology, in S. Coleman, J. Hartle, T. Piran & S. Weinberg, eds, ‘Proceedings of the Jerusalem Winter School on Quantum Cosmology and Baby Universes’, World Scientific, Singapore.

    Google Scholar 

  • Halliwell, J. (1991b), The Wheeler-DeWitt equation and the path integral in minisuperspace quantum cosmology, in A. Ashtekar & J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 75–115.

    Google Scholar 

  • Halliwell, J. (1992a), The interpretation of quantum cosmology models, in’Proceedings of the 13th International Conference on General Relativity and Gravitation, Cordoba, Argentina’.

    Google Scholar 

  • Halliwell, J. (1992b), ‘Smeared Wigner functions and quantum-mechanical histories’, Phys. Rev.

    Google Scholar 

  • Halliwell, J. Si Hawking, S. (1985), ‘Origin of structure in the universe’, Phys. Rev. D31, 1777–1791.

    MathSciNet  ADS  Google Scholar 

  • Halliwell, J., Perez-Mercander, J. Si Zurek, W., eds (1992), Physical Origins of Time Asymmetry, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hartle, J. (1986), Prediction and observation in quantum cosmology, in B. Carter & J. Hartle, eds, ‘Gravitation and Astrophysics, Cargese, 1986’, Plenum, New York.

    Google Scholar 

  • Hartle, J. (1988a), ‘Quantum kinematics of spacetime. I. Nonrelativistic theory’, Phys. Rev. D37, 2818–2832.

    MathSciNet  ADS  Google Scholar 

  • Hartle, J. (1988b), ‘Quantum kinematics of spacetime. II. A model quantum cosmology with real clocks’, Phys. Rev. D38, 2985–2999.

    MathSciNet  ADS  Google Scholar 

  • Hartle, J. (1991a), The quantum mechanics of cosmology, in S. Coleman, P. Hartle, T. Piran Si S. Weinberg, eds, ‘Quantum Cosmology and Baby Universes’, World Scientific, Singapore.

    Google Scholar 

  • Hartle, J. (1991b), ‘Spacetime grainings in nonrelativistic quantum mechanics’, Phys. Rev. D44, 3173–3195.

    MathSciNet  ADS  Google Scholar 

  • Hartle, J. & Hawking, S. (1983), ‘Wave function of the universe’, Phys. Rev. D28, 2960–2975.

    MathSciNet  ADS  Google Scholar 

  • Hawking, S. (1982), ‘The unpredictability of quantum gravity’, Comm. Math. Phys 87, 395–416.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hawking, S. (1984a), Lectures in quantum cosmology, in B. DeWitt Si R. Stora, eds, ‘Relativity, Groups and Topology II’, North-Holland, Amsterdam, pp. 333–379.

    Google Scholar 

  • Hawking, S. (1984b), ‘The quantum state of the universe’, Nucl. Phys. B239, 257–276.

    Article  MathSciNet  ADS  Google Scholar 

  • Hawking, S. Si Ellis, G. (1973), The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Hawking, S. Si Page, D. (1986), ‘Operator ordering and the flatness of the universe’, Nucl. Phys. B264, 185–196.

    Article  MathSciNet  ADS  Google Scholar 

  • Hawking, S. & Page, D. (1988), ‘How probable is inflation?’, Nucl. Phys. B298, 789–809.

    Article  MathSciNet  ADS  Google Scholar 

  • Henneaux, M. & Teitelboim, C. (1989), ‘The cosmological constant and general covariance’, Phys. Lett. B222, 195–199.

    ADS  Google Scholar 

  • Higgs, P. (1958), ‘Integration of secondary constraints in quantized general relativity’, Phys. Rev. Lett. 1, 373–375.

    Article  ADS  Google Scholar 

  • Hojman, S., Kuchar, K. Si Teitelboim, C. (1976), ‘Geometrodynamics regained’, Ann. Phys. (NY) 96, 88–135.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Horowitz, G. (1980), ‘Semiclassical relativity: The weak-field limit’, Phys. Rev. D21, 1445–1461.

    MathSciNet  ADS  Google Scholar 

  • Horowitz, G. (1981), Is flat space-time unstable?, in C. Isham, R. Penrose & D. Sciama, eds, ‘Quantum Gravity 2: A Second Oxford Symposium’, Clarendon Press, Oxford, pp. 106–130.

    Google Scholar 

  • Horowitz, G. & Wald, R. (1978), ‘Dynamics of Einstein’s equations modified by a higher-derivative term’, Phys. Rev. D17, 414–416.

    MathSciNet  ADS  Google Scholar 

  • Horowitz, G. & Wald, R. (1980), ‘Quantum stress energy in nearly conformally flat spacetimes’, Phys. Rev. D21, 1462 - 1465.

    MathSciNet  ADS  Google Scholar 

  • Isenberg, J. & Marsden, J. (1976), ‘The York map is a canonical transformation’, Ann. Phys. (NY) 96, 88–135.

    Article  Google Scholar 

  • Isham, C. (1984), Topological and global aspects of quantum theory, inB. DeWitt & R. Stora, eds, ‘Relativity, Groups and Topology II’, North-Holland, Amsterdam, pp. 1062–1290.

    Google Scholar 

  • Isham, C. (1985), Aspects of quantum gravity, inA. Davies &D. Sutherland, eds, ‘Superstrings and Supergravity: Proceedings of the 28th Scottish Universities Summer School in Physics, 1985’, SUSSP Publications, Edinburgh, pp. 1–94.

    Google Scholar 

  • Isham, C. (1987), Quantum gravity—grgll review talk, inM. MacCallum, ed., ‘General Relativity and Gravitation: Proceedings of the 11th International Conference on General Relativity and Gravitation’, Cambridge University Press, Cambridge.

    Google Scholar 

  • Isham, C. (1992), Conceptual and geometrical problems in quantum gravity, in H. Mitter & H. Gausterer, eds, ‘Recent Aspects of Quantum Fields’, Springer-Verlag, Berlin, pp. 123–230.

    Google Scholar 

  • Isham, C. & Kakas, A. (1984a), ‘A group theoretical approach to the canonical quantisation of gravity: I. Construction of the canonical group’, Class. Quan. Gray. 1, 621–632.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Isham, C. Si Kakas, A. (1984b), ‘A group theoretical approach to the canonical quantisation of gravity: II. Unitary representations of the canonical group’, Class. Quan. Gray. 1, 633–650.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Isham, C. & Kuchat, K. (1985a), ‘Representations of spacetime diffeomorphisms. I. Canonical parametrised spacetime theories’, Ann Phys. (NY) 164, 288–315.

    Article  ADS  MATH  Google Scholar 

  • Isham, C. Si Kuchai, K. (1985b), ‘Representations of spacetime diffeomorphisms. II. Canonical geometrodynamics’, Ann. Phys. (NY) 164, 316–333.

    Article  ADS  Google Scholar 

  • Isham, C. Si Kuchar, K. (1994), Quantum Gravity and the Problem of Time. In preparation.

    Google Scholar 

  • Jackiw, R. (1992a), Gauge theories for gravity on a line, in ‘Proceedings of NATO Advanced Study Institute ‘Recent Problems in Mathematical Physics, Salamanca, Spain, 1992“, Kluwer, The Netherlands.

    Google Scholar 

  • Jackiw, R. (1992b), Update on planar gravity (ti physics of infinite cosmic strings), in H. Sato, ed., ‘Proceedings of the Sixth Marcel Grossman Meeting on General Relativity’, World Scientific, Singapore.

    Google Scholar 

  • Joos, E. (1986), ‘Why do we observe a classical spacetime?’, Phys. Lett. A116, 6–8.

    MathSciNet  ADS  Google Scholar 

  • Joos, E. (1987), Quantum theory and the emergence of a classical world, in D. Greenberger, ed., ‘New Techniques and Ideas in Quantum Measurement’, New York Academic of Sciences, New York.

    Google Scholar 

  • Joos, E. Si Zeh, H. (1985), ‘The emergence of classical properties through interaction with the environment’, Zeitschrift für Physik B59, 223–243.

    ADS  Google Scholar 

  • Kaup, D. & Vitello, A. (1974), ‘Solvable quantum cosmological models and the importance of quantizing in a special canonical frame’, Phys. Rev. D9, 1648–1655.

    ADS  Google Scholar 

  • Kibble, T. (1981), Is a semi-classical theory of gravity viable?, in C. Isham, R. Penrose &D. Sciama, eds, ‘Quantum Gravity 2: A Second Oxford Symposium’, Clarendon Press, Oxford, pp. 63–80.

    Google Scholar 

  • Kiefer, C. (1987), ‘Continuous measurement of mini-superspace variables by higher multipoles’, Class. Quan. Gray. 4, 1369 - 1382.

    Article  MathSciNet  ADS  Google Scholar 

  • Kiefer, C. (1989a), ‘Continuous measurement of intrinsic time by fermions’, Class. Quan. Gray. 6, 561–566.

    Article  MathSciNet  ADS  Google Scholar 

  • Kiefer, C. (1989b), ‘Quantum gravity and Brownian motion’, Phys. Lett. A139, 201–203.

    MathSciNet  ADS  Google Scholar 

  • Kiefer, C. (1991), ‘Interpretation of the decoherence functional in quantum cosmology’, Class. Quan. Gray. 8, 379 - 392.

    Article  MathSciNet  ADS  Google Scholar 

  • Kiefer, C. (1992), Decoherence in quantum cosmology, in ‘Proceedings of the Tenth Seminar on Relativistic Astrophysics and Gravitation, Postdam, 1991’, World Scientific, Singapore.

    Google Scholar 

  • Kiefer, C. & Singh, T. (1991), ‘Quantum gravitational corrections to the functional Schrödinger equation’, Phys. Rev. D44, 1067–1076.

    MathSciNet  ADS  Google Scholar 

  • Klauder, J. (1970), Soluble models of guantum gravitation, in M. Carmeli, S. Flicker & Witten, eds, ‘Relativity’, Plenum, New York.

    Google Scholar 

  • Komar, A. (1979a), ‘Consistent factoring ordering of general-relativistic constraints’, Phys. Rev. D19, 830–833.

    ADS  Google Scholar 

  • Komar, A. (1979b), ‘Constraints, hermiticity, and correspondence’, Phys. Rev. D19, 2908–2912.

    ADS  Google Scholar 

  • Kuchar, K. (1970), ‘Ground state functional of the linearized gravitational field’, J. Math. Phys. 11, 3322–3344.

    Article  ADS  Google Scholar 

  • Kuchar, K. (1971), ‘Canonical quantization of cylindrical gravitational waves’, Phys. Rev. D4, 955–985.

    ADS  Google Scholar 

  • Kuchar, K. (1972), ‘A bubble-time canonical formalism for geometrodynamics’, J. Math. Phys. 13, 768–781.

    Article  MathSciNet  ADS  Google Scholar 

  • Kuchar, K. (1973), Canonical quantization of gravity, in ‘Relativity, Astrophysics and Cosmology’, Reidel, Dordrecht, pp. 237–288.

    Chapter  Google Scholar 

  • Kuchar, K. (1974), ‘Geometrodynamics regained: A Lagrangian approach’, J. Math. Phys. 15, 708–715.

    Article  MathSciNet  ADS  Google Scholar 

  • Kuchat, K. (1976a), ‘Dynamics of tensor fields in hyperspace III.’, J. Math. Phys. 17, 801–820.

    Article  ADS  Google Scholar 

  • Kuchar, K. (1976b), ‘Geometry of hyperspace I.’, J. Math. Phys. 17, 777–791.

    Article  MathSciNet  ADS  Google Scholar 

  • Kuchar, K. (1976c), ‘Kinematics of tensor fields in hyperspace II.’, J. Math. Phys. 17, 792–800.

    Article  MathSciNet  ADS  Google Scholar 

  • Kuchar, K. (1977), ‘Geometrodynamics with tensor sources IV’, J. Math. Phys.18, 1589–1597.

    Article  MathSciNet  ADS  Google Scholar 

  • Kuchar, K. (1981a), Canonical methods of quantisation, in C. Isham, R. Penrose & D. Sciama, eds, ‘Quantum Gravity 2: A Second Oxford Symposium’, Clarendon Press, Oxford, pp. 329–374.

    Google Scholar 

  • Kuchat, K. (1981b), ‘General relativity: Dynamics without symmetry’, J. Math. Phys. 22, 2640–2654.

    Article  ADS  Google Scholar 

  • Kuchat, K. (1982), ‘Conditional symmetries in parametrized field theories’, J. Math. Phys. 25, 1647–1661.

    ADS  Google Scholar 

  • Kuchai, K. (1986a), ‘Canonical geometrodynamics and general covariance’, Found. Phys. 16, 193–208.

    Article  ADS  Google Scholar 

  • Kuchai, K. (1986b), ‘Covariant factor ordering for gauge systems’, Phys. Rev. D34, 3044–3057.

    ADS  Google Scholar 

  • Kuchai, K. (1986c), ‘Hamiltonian dynamics of gauge systems’, Phys. Rev. D34, 3031–3043.

    ADS  Google Scholar 

  • Kuchai, K. (1987), ‘Covariant factor ordering of constraints may be ambiguous’, Phys. Rev. D35, 596–599.

    ADS  Google Scholar 

  • Kuchai, K. (1991a), ‘Does an unspecified cosmological constant solve the problem of time in quantum gravity?’, Phys. Rev. D43, 3332–3344.

    ADS  Google Scholar 

  • Kuchai, K. (1991b), The problem of time in canonical quantization, in A. Ashtekar & J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 141–171.

    Google Scholar 

  • Kuchat, K. (1992a), ‘Extrinsic curvature as a reference fluid in canonical gravity’, Phys. Rev. D45, 4443–4457.

    ADS  Google Scholar 

  • Kuchai, K. (1992b), Time and interpretations of quantum gravity, in‘Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics’, World Scientific, Singapore.

    Google Scholar 

  • Kuchai, K. & Ryan, M. (1989), ‘Is minisuperspace quantization valid? Taub in Mixmaster’, Phys. Rev. D40, 3982–3996.

    ADS  Google Scholar 

  • Kuchai, K. Si Torre, C. (1989), ‘World sheet diffeomorphisms and the cylindrical string’, J. Math. Phys. 30, 1769–1793.

    Article  MathSciNet  ADS  Google Scholar 

  • Kuchai, K. & Torre, C. (1991a), ‘Gaussian reference fluid and the interpretation of geometrodynamics’, Phys. Rev. D43, 419–441.

    ADS  Google Scholar 

  • Kuchat, K. & Torre, C. (1991b), ‘Harmonic gauge in canonical gravity’, Phys. Rev. D44, 3116–3123.

    ADS  Google Scholar 

  • Kuchai, K. & Torre, C. (1991c), Strings as poor relatives of general relativity, in A. Ashtekar Si J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 326–348.

    Google Scholar 

  • Lapchinski, V. & Rubakov, V. (1979), ‘Canonical quantization of gravity and quantum field theory in curved spacetime’, Acta. Phys. Pol. B10, 1041.

    ADS  Google Scholar 

  • Lee, J. & Wald, R. (1990), Local symmetries and constraints’, J. Math. Phys. 31, 725–743.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Linden, N. & Perry, M. (1991), ‘Path integrals and unitarity in quantum cosmology’, Nucl. Phys. B357, 289–307.

    Article  MathSciNet  ADS  Google Scholar 

  • Manojlović & Miković (1992), ‘Gauge fixing and independent canonical variables in the ashtekar formulation of general relativity’.

    Google Scholar 

  • McGuigan, M. (1988), ‘Third quantization and the Wheeler-DeWitt equation’, Phys. Rev. D38, 3031–3051.

    MathSciNet  ADS  Google Scholar 

  • McGuigan, M. (1989), ‘Universe creation from the third quantized vacuum’, Phys. Rev. D39, 2229–2233.

    MathSciNet  ADS  Google Scholar 

  • Mellor, F. (1991), ‘Decoherence in quantum Kaluza-Klein theories’, Nucl. Phys. B353, 291–301.

    Article  MathSciNet  ADS  Google Scholar 

  • Misner, C. (1957), ‘Feynman quantization of general relativity’, Rev. Mod. Phys. 29, 497–509.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Misner, C. (1992), Minisuperspace, inJ. Klauder, ed., ‘Magic without Magic: John Archibald Wheeler, A Collection of Essays in Honor of his 60th Birthday’, Freeman, San Francisco.

    Google Scholar 

  • Moller, C. (1962), The energy-momentum complex in general relativity and related problems, in A. Lichnerowicz & M. Tonnelat, eds, ‘Les. Théories Relativistes de la Gravitation’, CNRS, Paris.

    Google Scholar 

  • Morikawa, M. (1989), ‘Evolution of the cosmic density matrix’, Phys. Rev. D40, 4023–4027.

    MathSciNet  ADS  Google Scholar 

  • Newman, E. & Rovelli, C. (1992), ‘Generalized lines of force as the gauge invariant degrees of freedom for general relativity and Yang-Mills theory’. University of Pittsburgh preprint.

    Google Scholar 

  • Omnès, R. (1988a), ‘Logical reformulation of quantum mechanics. I. Foundations’, J. Stat. Phys. 53, 893–932.

    Article  ADS  MATH  Google Scholar 

  • Omnès, R. (1988b), ‘Logical reformulation of quantum mechanics. II. Interferences and the Einstein-Podolsky-Rosen experiment’, J. Stat. Phys. 53, 933–955.

    Article  ADS  Google Scholar 

  • Omnès, R. (1988c), ‘Logical reformulation of quantum mechanics. III. Classical limit and irreversibility’, J. Stat. Phys. 53, 957–975.

    Article  ADS  Google Scholar 

  • Omnès, R. (1989), ‘Logical reformulation of quantum mechanics. III. Projectors in semiclassical physics’, J. Stat. Phys. 57, 357–382.

    Article  ADS  Google Scholar 

  • Omnès, R. (1990), ‘From Hilbert space to common sense: A synthesis of recent progress in the interpretation of quantum mechanics’, Ann. Phys. (NY) 201, 354–447.

    Article  ADS  Google Scholar 

  • Omnès, R. (1992), ‘Consistent interpretations of quantum mechanics’, Rev. Mod. Phys. 64, 339–382.

    Article  ADS  Google Scholar 

  • Padmanabhan, T. (1989a), ‘Decoherence in the density matrix describing quantum three-geometries and the emergence of classical spacetime’, Phys. Rev. D39, 2924–2932.

    ADS  Google Scholar 

  • Padmanabhan, T. (1989b), ‘Semiclassical approximations to gravity and the issue of back-reaction’, Class. Quan. Gray. 6, 533–555.

    Article  MathSciNet  ADS  Google Scholar 

  • Padmanabhan, T. (1990), ‘A definition for time in quantum cosmology’, Pramana Jour. Phys. 35, L199–L204.

    Article  ADS  Google Scholar 

  • Page, D. (1986a), ‘Density matrix of the universe’, Phys. Rev. D34, 2267–2271.

    MathSciNet  ADS  Google Scholar 

  • Page, D. (1986b), Hawking’s wave function for the universe, in R. Penrose &C. Isham, eds, ‘Quantum Concepts in Space and Time’, Clarendon Press, Oxford, pp. 274–285.

    Google Scholar 

  • Page, D. (1989), ‘Time as an inaccessible observable’. ITP preprint NSF-ITP-89–18.

    Google Scholar 

  • Page, D. (1991), Intepreting the density matrix of the universe, in A. Ashtekar & J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 116–121.

    Google Scholar 

  • Page, D. & Geilker, C. (1981), ‘Indirect evidence for quantum gravity’, Phys. Rev. Lett. 47, 979–982.

    Article  MathSciNet  ADS  Google Scholar 

  • Page, D. Si Hotke-Page, C. (1992), Clock time and entropy, in J. Halliwell, J. PerezMercander & W. Zurek, eds, ‘Physical Origins of Time Asymmetry’, Cambridge University Press, Cambridge.

    Google Scholar 

  • Page, D. & Wooters, W. (1983), ‘Evolution without evolution: Dynamics described by stationary observables’, Phys. Rev. D27, 2885–2892.

    ADS  Google Scholar 

  • Pilati, M. (1982), ‘Strong coupling quantum gravity I: solution in a particular gauge’, Phys. Rev. D26, 2645–2663.

    MathSciNet  ADS  Google Scholar 

  • Pilati, M. (1983), ‘Strong coupling quantum gravity I: solution without gauge fixing’, Phys. Rev. D28, 729–744.

    MathSciNet  ADS  Google Scholar 

  • Randjbar-Daemi, S., Kay, B. Si Kibble, T. (1980), ‘Renormalization of semi-classical field theories’, Phys. Rev. Lett. 91B, 417–420.

    ADS  Google Scholar 

  • Rosenfeld, L. (1963), ‘On quantization of fields’, Nucl. Phys. 40, 353–356.

    Article  MathSciNet  MATH  Google Scholar 

  • Rovelli, C. (1990), ‘Quantum mechanics without time: A model’, Phys. Rev. D42, 2638–2646.

    ADS  Google Scholar 

  • Rovelli, C. (1991a), ‘Ashtekar formulation of general relativity and loop-space nonperturbative quantum gravity: A report.’. Pittsburgh University preprint.

    Google Scholar 

  • Rovelli, C. (1991b), Is there incompatibility between the ways time is treated in general relativity and in standard quantum theory?, in A. Ashtekar Si J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 126–140.

    Google Scholar 

  • Rovelli, C. (1991c), ‘Quantum evolving constants. Reply to ‘Comments on time in quantum gravity: An hypothesis“, Phys. Rev. D44, 1339–1341.

    MathSciNet  ADS  Google Scholar 

  • Rovelli, C. (1991d), ‘Statistical mechanics of gravity and the problem of time’. University of Pittsburgh preprint.

    Google Scholar 

  • Rovelli, C. (1991e), ‘Time in quantum gravity: An hypothesis’, Phys. Rev. D43, 442–456.

    MathSciNet  ADS  Google Scholar 

  • Rovelli, C. & Smolin, L. (1990), ‘Loop space representation of quantum general relativity’, Nucl. Phys. B331, 80–152.

    Article  MathSciNet  ADS  Google Scholar 

  • Salisbury, D. & Sundermeyer, K. (1983), ‘Realization in phase space of general coordinate transformations’, Phys. Rev. D27, 740–756.

    MathSciNet  ADS  Google Scholar 

  • Simon, J. (1991), ‘The stability of flat space, semiclassical gravity and higher derivatives’, Phys. Rev. D43, 3308–3316.

    ADS  Google Scholar 

  • Singer, I. (1978), ‘Some remarks on the Gribov ambiguity’, Comm. Math. Phys 60, 7–12.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Singh, T. Si Padmanabhan, T. (1989), ‘Notes on semiclassical gravity’, Ann. Phys. (NY) 196, 296–344.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Smarr, L. Si York, J. (1978), ‘Kinematical conditions in the construction of space-time’, Phys. Rev. D17, 2529–2551.

    MathSciNet  ADS  Google Scholar 

  • Smolin, L. (1992), ‘Recent c gvelopments in nonperturbative quantum gravity’. Syracuse University Preprint.

    Google Scholar 

  • Squires, E. (1991), ‘The dynamical role of time in quantum cosmology’, Phys. Lett. A155, 357–360.

    MathSciNet  ADS  Google Scholar 

  • Stachel, J. (1989), Einstein’s search for general covariance, 1912–1915, in D. Howard & J. Stachel, eds, ‘Einstein and the History of General Relativity: Vol I, Birkhäuser, Boston, pp. 63–100.

    Google Scholar 

  • Stone, C. Si Kuchar, K. (1992), ‘Representation of spacetime diffeomorphisms in canonical geometrodynamics under harmonic coordinate conditions’, Class. Quan. Gray. 9, 757–776.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Suen, W. (1989a), ‘Minkowski spacetime is unstable in semi-classical gravity’, Phys. Rev. Lett. 62, 2217–2226.

    Article  ADS  Google Scholar 

  • Suen, W. (1989b), ‘Stability of the semiclassical Einstein equation’, Phys. Rev. D40, 315–326.

    MathSciNet  ADS  Google Scholar 

  • Tate, R. (1992), ‘An algebraic approach to the quantization of constrained systems: Finite dimensional examples’. PhD. Dissertation.

    Google Scholar 

  • Teitelboim, C. (1982), ‘Quantum mechanics of the gravitational field’, Phys. Rev. D25, 3159–3179.

    MathSciNet  ADS  Google Scholar 

  • Teitelboim, C. (1983a), ‘Causality versus gauge invariance in quantum gravity and supergravity’, Phys. Rev. Lett. 50, 705–708.

    Article  MathSciNet  ADS  Google Scholar 

  • Teitelboim, C. (1983b), ‘Proper time gauge in the quantum theory of gravitation’, Phys. Rev. D28, 297–309.

    MathSciNet  ADS  Google Scholar 

  • Teitelboim, C. (1983c), ‘Quantum mechanics of the gravitational field’, Phys. Rev. D25, 3159–3179.

    MathSciNet  ADS  Google Scholar 

  • Teitelboim, C. (1983d), ‘Quantum mechanics of the gravitational field in asymptotically flat space’, Phys. Rev. D28, 310–316.

    MathSciNet  ADS  Google Scholar 

  • Teitelboim, C. (1992), in‘Proceedings of NATO Advanced Study Institute ‘Recent Problems in Mathematical Physics, Salamanca, Spain, 1992“, Kluwer, The Netherlands.

    Google Scholar 

  • Torre, C. (1989), ‘Hamiltonian formulation of induced gravity in two dimensions’, Phys. Rev. D40, 2588–2597.

    MathSciNet  ADS  Google Scholar 

  • Torre, C. (1991), ‘A complete set of observables for cylindrically symmetric gravitational fields’, Class. Quan. Gray. 8, 1895–1911.

    Article  MathSciNet  ADS  Google Scholar 

  • Torre, C. (1992), ‘Is general relativity an “already parametrised” theory?’.

    Google Scholar 

  • Unruh, W. (1988), Time and quantum gravity, in M. Markov, V. Bérezin Si V. Frolov, eds, ‘Proceedings of the Fourth Seminar on Quantum Gravity’, World Scientific, Singapore, pp. 252–268.

    Google Scholar 

  • Unruh, W. (1989), ‘Unimodular theory of canonical quantum gravity’, Phys. Rev. D40, 1048–1052.

    MathSciNet  ADS  Google Scholar 

  • Unruh, W. (1991), Loss of quantum coherence for a damped oscillator, in A. Ashtekar Si J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 67–74.

    Google Scholar 

  • Unruh, W. & Wald, R. (1989), ‘Time and the interpretation of quantum gravity’, Phys. Rev. D40, 2598–2614.

    MathSciNet  ADS  Google Scholar 

  • Unruh, W. & Zurek, W. (1989), ‘Reduction of the wave-packet in quantum Brownian motion’, Phys. Rev. D40, 1071–1094.

    MathSciNet  ADS  Google Scholar 

  • Valentini, A. (1992), ‘Non-local hidden-variables and quantum gravity’. SISSA preprint 105/92/A.

    Google Scholar 

  • Van Hove, L. (1951), ‘On the problem of the relations between the unitary transformations of quantum mechanics and the canonical transformations of classical mechanics’, Acad. Roy. Belg. 37, 610–620.

    MATH  Google Scholar 

  • Vilenkin, A. (1988), ‘Quantum cosmology and the initial state of the universe’, Phys. Rev. D39, 888–897.

    MathSciNet  ADS  Google Scholar 

  • Vilenkin, A. (1989), ‘Interpretation of the wave function of the universe’, Phys. Rev. D39, 1116–1122.

    ADS  Google Scholar 

  • Vink, J. (1992), ‘Quantum potential interpretation of the wavefunction of the universe’, Nucl. Phys. B369, 707–728.

    Article  MathSciNet  ADS  Google Scholar 

  • Wheeler, J. (1962), Neutrinos, gravitation and geometry, in‘Topics of Modern Physics. Vol 1’, Academic Press, New York, pp. 1–130.

    Google Scholar 

  • Wheeler, J. (1964), Geometrodynamics and the issue of the final state, inC. DeWitt & B. DeWitt, eds, ‘Relativity, Groups and Topology’, Gordon and Breach, New York and London, pp. 316–520.

    Google Scholar 

  • Wheeler, J. (1968), Superspace and the nature of quantum geometrodynamics, in C. DeWitt Si J. Wheeler, eds, ‘Batelle Rencontres: 1967 Lectures in Mathematics and Physics’, Benjamin, New York, pp. 242–307.

    Google Scholar 

  • Wooters, W. (1984), ‘Time replaced by quantum corrections’, Int. J. Theor. Phys. 23, 701–711.

    Article  Google Scholar 

  • York, J. (1972a), ‘Mapping onto solutions of the gravitational initial value problem’, J. Math. Phys. 13, 125–130.

    Article  MathSciNet  ADS  Google Scholar 

  • York, J. (1972b), ‘Role of conformal three-geometry in the dynamics of gravitation’, Phys. Rev. Lett.28, 1082–1085.

    Article  ADS  Google Scholar 

  • York, J. (1979), Kinematics and dynamics of general relativity, inL. Smarr, ed., ‘Sources of Gravitational Radiation’, Cambridge University Press, Cambridge, pp. 83–126.

    Google Scholar 

  • Zeh, H. (1986), ‘Emergence of classical time from a universal wave function’, Phys. Lett.A116, 9–12.

    MathSciNet  ADS  Google Scholar 

  • Zeh, H. (1988), ‘Time in quantum gravity’, Phys. Lett. Al26, 311–317.

    ADS  Google Scholar 

  • Zurek, W. (1981), ‘Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?’, Phys. Rev.D24, 1516–1525.

    MathSciNet  ADS  Google Scholar 

  • Zurek, W. (1982), ‘Environment-induced superselection rules’, Phys. Rev. D26, 1862–1880.

    MathSciNet  ADS  Google Scholar 

  • Zurek, W. (1983), Information transer in quantum measurements:Irreversibility and amplification, in P. Meystre Si M. Scully, eds, ‘Quantum Optics, Experimental Gravity, and Measurement Theory’, Plenum, New York, pp. 87–116.

    Chapter  Google Scholar 

  • Zurek, W. (1986), Reduction of the wave-packet: How long does it take?, in G. Moore Si M. Scully, eds, ‘Frontiers of Nonequilibrium Statistical Physics’, Plenum, New York, pp. 145–149.

    Chapter  Google Scholar 

  • Zurek, W. (1991), Quantum measurements and the environment-induced transition from quantum to classical, in A. Ashtekar &J. Stachel, eds, ‘Conceptual Problems of Quantum Gravity’, Birkhäuser, Boston, pp. 43–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Isham, C.J. (1993). Canonical Quantum Gravity and the Problem of Time. In: Ibort, L.A., Rodríguez, M.A. (eds) Integrable Systems, Quantum Groups, and Quantum Field Theories. NATO ASI Series, vol 409. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1980-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1980-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4874-3

  • Online ISBN: 978-94-011-1980-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics