Skip to main content

Formation, Composition and Physiology of Algal Biofilms

  • Chapter
Biofilms — Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 223))

Abstract

Algal biofilms will develop on any illuminated surface which is either submerged in water or exposed provided there is moisture in the atmosphere and nutrients are available. In natural ecosystems, algal biofilms are familiar on the surface of stones in rivers and on the seashore or in the aerial environment on garden walls and the bark of trees. Algal biofilms on man made structures are best known for the nuisance they cause both in terms of safety and economics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. & Thingstad, F. (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser 10, 257–263.

    Article  Google Scholar 

  • Baier, R.E. (1980) Substrata influences on the adhesion of microorganisms and their resultant new surface properties. In: Bitton, G, Marshall, K (eds) Adsorption of microorganisms to surfaces. Wiley, New York, pp. 59–104.

    Google Scholar 

  • Bauld, J. & Brock, T.D. (1974) Algal excretion and bacterial assimilation in hot algal mats. J. Phycol. 10, 101–106.

    Google Scholar 

  • Callow, M. E. (1986) Fouling algae from “in-service” ships. Bot. mar. 24, 351–357.

    Google Scholar 

  • Callow, M.E. & Edyvean, R.G.J. (1990) Algal fouling and corrosion. In: Akatsuka, I (ed) Introduction to Applied Phycology. SPB Academic Publishing bv, The Hague, The Netherlands. pp. 367–387.

    Google Scholar 

  • Callow, M.E., Pitchers R.A. & Milne, A. (1986) The control of fouling by non-biocidal systems. In L.V. Evans & K.D. Hoagland (eds), Algal Biofouling. Elsevier, Amsterdam, 145–158.

    Chapter  Google Scholar 

  • Characklis, W.G. & Cooksey, K.E. (1983) Biofilms and microbial fouling. Adv. applied Microbiol. 29, 93–138.

    Article  CAS  Google Scholar 

  • Cooksey. B., Cooksey, K.E., Miller, C.A., Rubin, R.W. & Webster, D. (1984) The attachment of microfouling diatoms. In: Costlow, J.D. & Tipper, R.C. (eds). Marine Biodeterioration: An Interdisciplinary Study. US Naval Institute, Annapolis, Maryland.

    Google Scholar 

  • Cooksey, B. & Cooksey, K.E. (1988) Chemical signal-response in diatoms of the genus Amphora. J. Cell Sci. 91, 523–529.

    CAS  Google Scholar 

  • Costlow, J. D. & Tipper, R.C. (eds) (1984) Marine Biodeterioration: An Interdisciplinary Study. US Naval Institute, Annapolis, Maryland.

    Google Scholar 

  • Daniel, G.F. & Chamberlain, A.H.L. (1981) Copper immobilization in fouling diatoms. Bot. Mar. 14: 229–243.

    Article  Google Scholar 

  • Daniel, G.F., Chamberlain, A.H.L. & Jones, E.B.G.(1980) Ultrastructural observations on the marine fouling diatom Amphora. Helgolander wiss. Meeresunters. 34, 123–149.

    Article  CAS  Google Scholar 

  • Daniel, G.F., Chamberlain, A.H.L. & Jones, E.B.G. (1987) Cytochemical and electron microscopical observations on the adhesive materials of marine fouling diatoms. Br. phycol. J. 22, 101–118.

    Article  Google Scholar 

  • Edyvean, R.G.J. & Terry, L.A. (1983) Polarization studies of 50D steel in cultures of marine algae. Int. Biodeterior. Bull. 19, 1–11.

    CAS  Google Scholar 

  • Edyvean, R.G.J. & Videla, H.A. (1991) Biological corrosion. Interdisciplinary Science Reviews, 16, 267–282.

    Article  Google Scholar 

  • Fay, P. (1981) Photosynthetic microorganisms. In: Nitrogen fixation I. Ecology. Broughton, W.J. (ed.) Clarendon Press Oxford, 1–29.

    Google Scholar 

  • Fletcher R.L. & Callow, M.E. (1992) The settlement, attachment and establishment of marine algal spores. Br. phycol. J. In press.

    Google Scholar 

  • Fletcher, R.L. Baier, R.E. & Fornalik, M.S (1984a) The influence of surface energy on spore development in some common marine fouling algae. In Proc. int. Congr. mar. Corros. Fouling, 6, 5–8, August 1984, Athens, Greece. Marine Biology Volume: 129–144.

    Google Scholar 

  • Fletcher, R.L., Jones, A.M. & Jones, E.B.G. (1984b) The attachment of fouling algae. In: Costlow, J.D. & Tipper, R.C. (eds), Marine Biodeterioration: An Interdisciplinary Study. Naval Institute Press, Annapolis, MD, 172–182.

    Chapter  Google Scholar 

  • French, M.S. & Evans, L.V. (1988) The effects of copper and zinc on growth of the fouling diatoms Amphora and Amphiprora. Biofouling, 1, 3–18.

    Article  CAS  Google Scholar 

  • Glud, R.N., Ramsing, N.B. & Revsbech, N.P. (1992) Photosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors. J.Phycol., 28, 51–60.

    Article  Google Scholar 

  • Grant, C (1982). Fouling of terrestrial substrates by algae and implications for control a review. Int. biodet. Bull. 18, 57–65.

    Google Scholar 

  • Griffith, J.R. (1985) The fouling release concept: A viable alternative antifouling coating? In: Smith, R. (ed.), Polymers in a Marine Environment. The Institute of Marine Engineers, London: 235–236.

    Google Scholar 

  • Hendey, N.I. (1951) Littoral diatoms of Chichester Harbour with special reference to fouling. J. r. micros. Soc. 71, 1–86.

    Article  CAS  Google Scholar 

  • Hutson, R.A., Leadbeater, B. S. C. & Sedgwick, R.W. (1987) Algal interference with water treatment processes. Progress in Phycological Research, 5, 265–299.

    CAS  Google Scholar 

  • Hunter, J.E. & Evans, L.V. (1991) Raft trial experiments on antifouling paints containing zineb and copper. Biofouling, 3, 113–137.

    Article  CAS  Google Scholar 

  • Jackson, S.M. & Jones, E.B.G. (1988) Fouling film development on antifouling paints with special reference to film thickness.Int. Biodeterioration, 24, 277–287.

    Article  CAS  Google Scholar 

  • Jones, A.M., Fletcher, R.L., Daniel, G.F. & Jones, E.B.G. (1982) Settlement and adhesion of algae. In: Mauchline, J. (ed.), Fouling and Corrosion of metals in Seawater. Scottish Marine Biological Association, Oban: 31–77.

    Google Scholar 

  • Kuenen, J.G., Jorgensen, B.B. & Revsbech, N.P. (1986) Oxygen microprofiles of trickling filter biofilms. Water Res. 20: 1589–1598.

    Article  CAS  Google Scholar 

  • Lakatos, Gy. (1990) Study on the biofouling forming in industrial cooling water systems. In: Howsam, P (ed) Microbiology in Civil Engineering. FEMS Symposium 59. Chapman & Hall. pp. 81–94.

    Google Scholar 

  • Lewthwaite, J.C., Molland, A.F. & Thomas, K.W. (1985) An investigation into the variation of ship skin resistance with fouling. Trans. R.I.N.A., 127, 269–284.

    Google Scholar 

  • Loeb, S.C. (1981) An in situ method for measuring the primary productivity and standing crop of the epilithic periphytic community in lentic systems. Limnol. Oceanogr. 26, 394–399.

    Article  Google Scholar 

  • Ludyansky, M. (1991) Algal fouling in cooling water systems. Biofouling, 3, 13–21.

    Article  CAS  Google Scholar 

  • Marker, A.F.H. (1976) The benthic algae of some streams in Southern England. J. Ecol. 64, 359–373.

    Article  CAS  Google Scholar 

  • Marshall, K. (1985) Mechanisms of bacterial adhesion at solid-water interfaces. In: Savage, D.C. & Fletcher, M (eds), Bacterial Adhesion, Plenum Press, New York. pp. 133–161.

    Chapter  Google Scholar 

  • Millner, P.A. & Evans, L.V. (1980) The effects of triphenyltin chloride on respiration and photosynthesis in the green algae Enteromorpha intestinalis and Ulothrix pseudoflacca. PL Cell Envir. 3: 339–348.

    Article  CAS  Google Scholar 

  • Millner, P.A. & Evans, L.V. (1981) Uptake of triphenyltin chloride by Enteromorpha intestinalis and Ulothrix pseudoflacca. PL Cell Envir. 4: 383–389.

    Article  CAS  Google Scholar 

  • Paerl, H.W. (1985) Influence of attachment on microbial metabolism and growth in aquatic ecosystems. In: Savage, D.C. & Fletcher, M. (eds.) Bacterial adhesion, Plenum Press, New York. 363–400.

    Chapter  Google Scholar 

  • Paerl, H.W. & Merkel, S. (1982) The effects of particles on phosphorus assimilation in attached vs. free floating microorganisms. Arch. Hydrobiol. 93, 125–134.

    Google Scholar 

  • Price, R., Patchan, M., Clare, A., Bonaventura, J. & Rittschof, D. (1991) Elimination of rosin from vinyl antifouling coatings by the use of novel cylindrical channel-forming microtubules. In: Polymers in a Marine Environment. The Institute of Marine Engineers, London.

    Google Scholar 

  • Pyne, S., Fletcher, R.L. & Jones, E.B.G. (1986) Diatom communities on non-toxic substrata and two conventional antifouling surfaces immersed in Langstone Harbour, South coast of England. In: Evans, L.V. & Hoagland, K.D. (eds) Algal Biofouling. Elsevier, Amsterdam. pp. 101–113.

    Chapter  Google Scholar 

  • Revsbech, N.P., Jorgensen, B.B., Blackburn, T.H. & Cohen, Y. (1983) Microelectrode studies of the photosynthesis and O2, H2S and pH profiles in a microbial mat. Limnol. Oceanogr. 28, 1062–1074.

    Google Scholar 

  • Rittschof, D. & Costlow, J.D. (1987) Macrofouling and its management by non-toxic means. Advances in Aquatic Biology and Fisheries. 1–11.

    Google Scholar 

  • Robinson, M.G. & Hall, B.D. (1990) Reversal of copper toxicity in Amphora cojfeaeformis: role of externally bound copper. Biofouling, 2, 179–189.

    Article  CAS  Google Scholar 

  • Robinson, M. G., Hall, B.D. & Voltolina, D. (1985) Slime films on antifouling paints: short-term indicators of long-term effectiveness. J. Coatings Technology. 57, 35–41.

    CAS  Google Scholar 

  • Rossmoore, H.W. (1990) The interaction of formaldehyde, isothiazolone and copper. Int. Biodeterioration, 26, 225–235,

    Article  CAS  Google Scholar 

  • Stock, M.S. & Ward, A.K. (1991) Blue-green algal mats in small streams.J. Phycol., 27, 692–698.

    Article  Google Scholar 

  • Webster, D.R., Cooksey, K.E. & Rubin, R.W. (1985) An investigation of the involvement of cytoskeletal structures and secretion in gliding motility of the marine diatom Amphora coffeaeaformis. Cell Motility, 5, 103–122.

    Article  CAS  Google Scholar 

  • Wee, Y.C. & Lee, K.B. (1980) Proliferation of algae on surfaces of buildings in Singapore.Int. biodet. Bull. 16, 113–117.

    Google Scholar 

  • Whitford, L.A. & Schumacher, G.J. (1961) Effect of current on mineral uptake and respiration by a freshwater alga. Limnol. Oceanogr. 6, 423–425.

    Google Scholar 

  • Wigglesworth-Cooksey, B. & Cooksey, K.E. (1992) Can diatoms sense surfaces?: state of our knowledge. Biofouling, 5, 227–238.

    Article  CAS  Google Scholar 

  • Woods, D.C. & Fletcher, R.L. (1991) Studies on the strength of adhesion of some common fouling diatoms. Biofouling, 3, 287–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leadbeater, B.S.C., Callow, M.E. (1992). Formation, Composition and Physiology of Algal Biofilms. In: Melo, L.F., Bott, T.R., Fletcher, M., Capdeville, B. (eds) Biofilms — Science and Technology. NATO ASI Series, vol 223. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1824-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1824-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4805-7

  • Online ISBN: 978-94-011-1824-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics