Skip to main content

The role of piscidic acid secreted by pigeonpea roots grown in an Alfisol with low-P fertility

  • Chapter
Genetic Aspects of Plant Mineral Nutrition

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 50))

Abstract

In India, pigeonpea (Cajanus cajan (L.) Millsp.) has been traditionally grown as an intercrop, mainly with cereals such as sorghum (Sorghum bicolor (L.) Moench) and pearl millet (Pennisetum americanum (L.) Leeke) under low inputs of fertilizers. The response of pigeonpea to applied phosphorus (P) is generally low even in low-P Alfisols where a major fraction of inorganic P is in the iron-associated form (Fe-P). Pigeonpea has a special ability to take up P from low-P Alfisols on which other crops (sorghum, maize (Zea mays L.), soybean (Glycine max (L.) Merrill), and pearl millet) cannot survive. This characteristic is attributed to piscidic acid and its derivative, which is secreted from the roots of pigeonpea, but not by those of the other crop species. These substances can release P from Fe-P by chelating Fe3+. From results of both the composition of mineral contents and the growth stimulated by the inoculation of VAM fungi we propose a mechanism of P acquisition by pigeonpea from an Alfisol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ae N, Arihara J and Okada K 199la Phosphorus response of chickpea and evaluation of phosphorus availability in Indian Alfisols and Vertisols. In Phosphorus Nutrition of Grain Legumes in the Semi-arid Tropics. Eds. C Johansen, K K Lee and K L Sahrawat. pp 33–41. ICRISAT, Patancheru A P India.

    Google Scholar 

  • Ae N, Arihara J and Okada K 1991b Phosphorus uptake mechanisms of pigeonpea grown in Alfisols and Vertisols. In Phosphorus Nutrition of Grain Legumes in the Semiarid Tropics. Eds C Johansen. K K Lee and K L Sahrawat. pp 91–98. ICRISAT, Patanchera A P, India.

    Google Scholar 

  • Ae N, Arihara J, Okada K, Yoshihara T and Johansen C 1990 Phosphorus uptake by pigeonpea and its role in cropping systems of Indian subcontinent. Science 248, 477–480.

    Article  PubMed  CAS  Google Scholar 

  • Aiyer AK Y N 1949 Mixed cropping in India. Indian J. Agric. Sci. 19, 439–543.

    Google Scholar 

  • Arnon D I 1938 Microelements in culture-solution experiments with higher plants. Am. J. Bot. 25, 322–325.

    Article  CAS  Google Scholar 

  • Banger A R, Mane V B and Zende G K 1979 Evaluation of soil tests at different depths and fertility levels of Vertisols. Indian J. Agric. Sci. 49, 542–549.

    Google Scholar 

  • Börner H 1955 Untersuchungen über phenolische Verbindungen aus Getreidestroh and Getreiderückständen. Naturwissenschaften 42, 583–584.

    Article  Google Scholar 

  • Börner H 1956 Der papierchromatographische Nachweis von Ferulasäure in wässrigen Extrakten von Getreidestroh und Getreiderückständen. Naturwissenschaften 43, 129–130.

    Article  Google Scholar 

  • Börner H 1958 Untersuchungen über den Abbau von Phlorizin im Boden. Ein Beitrag zum Problem der Bodenmüdigkeit bei Obstgehölzen. Naturwissenschaften 45, 138–139.

    Article  Google Scholar 

  • Bray R H and Kurtz T 1945 Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59, 39–45.

    Article  CAS  Google Scholar 

  • Bridge W, Coleman F and Robertson A 1948 Constituents of ‘Cortex pisciae erythrina’. Part 1. The structure of piscidic acid. J. Chem. Soc. 1948, 257–260.

    Google Scholar 

  • Freer P C and Clover A M 1901 On the constituents of Jamaica dogwood. Am. Chem. J. 25, 390–413.

    Google Scholar 

  • Gardner W K, Barber D A and Parbery D G 1983 The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant and Soil 70, 107–124.

    Article  CAS  Google Scholar 

  • Itoh S 1987 Characteristics of phosphorus uptake of chickpea in comparison with pigeonpea, soybean, and maize. Soil Sci. Plant Nutr. 33, 417–422.

    Article  CAS  Google Scholar 

  • Johansen C 1990 Pigeonpea: mineral nutrition. In The Pigeonpea. Eds Y L Nene, Susan D Hall and V K Sheila. pp 209–231.C A B International, Wallingford, UK.

    Google Scholar 

  • Manjunath A and Bagyaraj D J 1984 Response of pigeonpea and cowpea to phosphate and dual inoculation with vesicular-arbuscular mycorrhiza and Rhizobium. Trop. Agric. (Trinidad) 61, 48–52.

    Google Scholar 

  • Marschner H 1986 Mineral Nutrition of Higher Plants. Academic Press, London, UK. 456 p.

    Google Scholar 

  • Moghimi A and Tate M E 1978 Does 2-ketogluconate chelate calcium in the pH range 2.4 to 6.4? Soil Biol. Biochem. 10, 289–292.

    Article  CAS  Google Scholar 

  • Mosse B 1981 Vesicular-arbuscular mycorrhiza research for tropical agriculture. Research Bulletin, Hawaii Institute of Tropical Agriculture and Human Resources. University of Hawaii, Honolulu, HI. 82 p.

    Google Scholar 

  • Mullette K J, Hannon N J and Elliott A G L 1974 Insoluble phosphorus usage by Eucalyptus. Plant and Soil 41, 199–205.

    Article  CAS  Google Scholar 

  • Murphy J and Riley J P 1962 A modified single solution method for determination of phosphate in natural waters. Anal. Chem. Acta 27, 31–36.

    Article  CAS  Google Scholar 

  • Olsen S R, Cole C V, Watanabe F S and Dean L A 1954 Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. US Gov. Printing Office, Washington, DC.

    Google Scholar 

  • Sakamura S, Yoshihara T and Toyoda K 1973 The con-stituents of Petasites japonicus: Structure Fukiic acid and Fukinolic acid. Agric. Biol. Chem. 37, 1915–1921.

    Article  CAS  Google Scholar 

  • Sheldrake A R and Narayanan 1979 Growth, development and nutrient uptake in pigeonpeas (Cajanus cajan). J. Agric. Sci., Cambridge 92, 513–526.

    Article  Google Scholar 

  • Smeby R R, Zbinovsky V and Burris R H 1954 The organic acids of Narcissius poeticua. Am. Chem. Soc. 76, 6127–6130.

    Article  CAS  Google Scholar 

  • Truog E 1930 Determination of the readily available phosphorus of soils. J. Am. Soc. Agron. 22, 874–882.

    Article  CAS  Google Scholar 

  • Yoshihara T, Ichihara A, Nuibe H and Sakamura S 1974 The stereochemistry of fukiic acid and its correlation with piscidic acid. Agr. Biol. Chem. 38, 121–126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ae, N., Arihara, J., Okada, K., Yoshihara, T., Otani, T., Johansen, C. (2010). The role of piscidic acid secreted by pigeonpea roots grown in an Alfisol with low-P fertility. In: Randall, P.J., Delhaize, E., Richards, R.A., Munns, R. (eds) Genetic Aspects of Plant Mineral Nutrition. Developments in Plant and Soil Sciences, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1650-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1650-3_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4721-0

  • Online ISBN: 978-94-011-1650-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics