Skip to main content

Molecular and cell biology of skeletal muscle regeneration

  • Chapter
Molecular and Cell Biology of Muscular Dystrophy

Part of the book series: Molecular and Cell Biology of Human Diseases Series ((Mol. Cell Biol. Hu. Dis.))

Abstract

When skeletal muscle is damaged, it is repaired by the proliferation of mononuclear muscle precursor cells (mpc) which fuse either with one another to form young multinucleated muscle cells (myotubes) or with the ends of damaged myofibres (Robertson et al., 1990). The success of new muscle formation is related to the size of the injury, as after major trauma and extensive disruption of the external lamina of muscle fibres there is often significant replacement by fibrous and cellular connective tissue. Impaired muscle regeneration and progressive replacement by fat and connective tissue is a feature of myopathies such as Duchenne muscular dystrophy (DMD), although this results from many small discrete lesions constantly recurring over a long period of time rather than from a single large injury. Failed regeneration can be seen in simplistic terms as a failure of muscle precursor replication. In this review we shall concentrate on the biology of muscle precursor cells. For coverage of other aspects of regeneration such as resealing of damaged myofibres, revascularization and reinnervation, see Grounds (1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamafio, N.A., Towns, R.J. and Kostyo, J.L. (1991) Growth hormone receptors and action in BC3H-1 myocytes. Growth ReguL, 1, 17–22.

    PubMed  CAS  Google Scholar 

  • Alameddine, H., Sharp, N., Dehaupas, S. et al. (1990) Lymphocyte Leu-19 antigens expression in regenerating canine muscles. J. Neurol. Sci., 98S, 296.

    Google Scholar 

  • Allen, R.E. and Boxhorn, L.A. (1989) Regulation of skeletal muscle satellite cell proliferation by transforming growth factor-beta, insulin-like growth factor 1, and fibroblast growth factor. J. Cell Physiol., 138, 311–15.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R. and Rankin, L.L. (1990) Regulation of satellite cells during skeletal muscle growth and development. Proc. Soc. Exp. Biol. Med., 194, 81–6.

    PubMed  CAS  Google Scholar 

  • Allen, R.E., McAllister, P.K. and Masak, K.C. (1980) Myogenic potential of satellite cells in skeletal muscle of old rats. A brief note. Mech. Age. Dev., 13, 105–9.

    Article  CAS  Google Scholar 

  • Allen, R.E., Dodson, M.V., Luiten, L.S. and Boxhorn, L.K. (1985) A serum free medium that supports the growth of cultured skeletal satellite cells. In vitro Cell Dev. Biol., 21, 636–40.

    Article  PubMed  CAS  Google Scholar 

  • Allen, R.E., Rankin, L.L., Greene, E.A. et al. (1991) Desmin is present in proliferating rat muscle satellite cells but not in bovine muscle satellite cells. J. Cell Physiol, 149, 525–35.

    Article  PubMed  CAS  Google Scholar 

  • Alterio, J., Courtois, Y., Robelin, J. et al. (1990) Acid and basic fibroblast growth factor mRNAs are expressed by skeletal muscle satellite cells. Biochem. Biophys. Res. Comm., 166, 1205–12.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, K.E., Ovalle, W.K. and Bressler, B.M. (1987) Electron microscopic and autoradiographic characterisation of hindlimb muscle regeneration in the mdx mouse. Anat. Rec., 219, 243–57.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.E., Liu, L. and Kardami, E. (1991) Distinctive patterns of bFGF distribution in degenerating and regenerating areas of dystrophic (mdx) striated muscles. Dev. Biol., 147, 96–109.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.E., Kakulas, B.A., Jacobsen, P.F. et al. (1992) Comparison of basic fibroblast growth factor in X-linked dystrophin deficient myopathies of human, dog and mouse. Submitted for publication.

    Google Scholar 

  • Armand, O., Boutineau, A.-M., Manger, A. et al. (1983) Origin of satellite cells in avian skeletal muscles. Arch. d’Anat. Micr., 72, 163–81.

    CAS  Google Scholar 

  • Askanas, V. and Gallez-Hawkins, G. (1985) Synergistic influence of polypeptide growth factors on cultured human muscle. Arch. Neurol., 42, 749–52.

    Article  PubMed  CAS  Google Scholar 

  • Austin, L. and Burgess, A.W. (1991) Stimulation of myoblast proliferation in culture by leukaemia inhibitory factor and other cytokines. J. Neurol. Sci., 101,193–7.

    Article  PubMed  CAS  Google Scholar 

  • Austin, L., Bower, L., Kurek, J. and Vakakis, N. (1992) The effects of leukaemia inhibitory factor and other cytokines on murine and human myoblast proliferation. J. Neurol. Sci., 112, 185–91.

    Article  PubMed  CAS  Google Scholar 

  • Bayne, E.K., Anderson, M.J. and Fambrough, D.M. (1984) Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates. J. Cell Biol., 99, 1486–501.

    Article  PubMed  CAS  Google Scholar 

  • Beilharz, M.W., Lareu, R., Garrett, K.L. et al. (1992) Quantitation of muscle precursor cell activity in skeletal muscle by Northern analysis of MyoD and myogenin: Application to dystrophic (mdx) mouse muscle. Mol. Cell Neurosci., 3, 326–33.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, R. (1979) Tissue culture studies on the origin of myogenic cells during muscle regeneration in the rat, in Muscle Regeneration (eds A. Mauro et al.), Raven Press, New York, pp. 13–29.

    Google Scholar 

  • Bischoff, R. (1986a) Proliferation of muscle satellite cells on intact myofibers in culture. Dev. Biol., 115, 129–39.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, R. (1986b) A satellite cell mitogen from crushed adult muscle. Dev. Biol., 115, 140–7.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, R. (1989) Analysis of muscle regeneration using single myofibers in culture. Med. Sci. Sports Exerc., 21, S164–S172.

    PubMed  CAS  Google Scholar 

  • Bischoff, R. (1990a) Interaction between satellite cells and skeletal muscle fibres. Development, 109, 943–52.

    PubMed  CAS  Google Scholar 

  • Bischoff, R. (1990b) Control of satellite cell proliferation. Adv. Exp. Biol. Med., 280, 147–58.

    Article  CAS  Google Scholar 

  • Bischoff, R. (1990c) Cell cycle commitment of rat muscle satellite cells. J. Cell Biol., 111, 201–7.

    Article  PubMed  CAS  Google Scholar 

  • Blaivas, M. and Carlson, B.M. (1991) Muscle fibre branching — differences between grafts in old and young rats. Mech. Ageing Dev., 60, 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Blau, H.M., Webster, C., Chiu, C-P., Guttman, S. and Chandler, F. (1983a) Differentiation properties of pure populations of human dystrophic muscle cells. Exp. Cell Res., 144, 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Blau, H.M., Webster, C. and Pavlath, G.K. (1983b) Defective myoblasts identified in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA, 80, 4856–60.

    Article  PubMed  CAS  Google Scholar 

  • Braun, T., Bober, E., Buschhausen-Denker, G. et al. (1989) Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. EMBO J., 8, 3617–25.

    PubMed  CAS  Google Scholar 

  • Brooks, S.V. and Faulkner, J.A. (1990) Contraction-induced injury: recovery of skeletal muscles in young and old mice. Am. J. Physiol., 258 (Cell Physiol 27) C436–C442.

    PubMed  CAS  Google Scholar 

  • Brunetti, A., Maddux, B.A., Wong, K.Y. and Goldfine, I.D. (1989) Muscle cell differentiation is associated with increased insulin receptor biosynthesis and messenger RNA levels. J. Clin. Invest., 83, 192–8.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, J.A., Hillgers, A.R. and Hinterberger, T.J. (1986) Evidence that reserve cells are a source of regenerated adult newt muscle in vitro. Nature, 321, 607–10.

    Article  Google Scholar 

  • Campion, D.R. (1984) The muscle satellite cell: a review. Int. Rev. Cytol., 87, 225–51.

    Article  PubMed  CAS  Google Scholar 

  • Cardasis, C.A. (1979) Isolated single mammalian muscle fibres aid in the study of satellite cells and myonuclear populations, in Muscle Regeneration (eds A. Mauro et al.), Raven Press, New York, pp. 155–66.

    Google Scholar 

  • Carlson, B.M. and Faulkner, J.A. (1989) Muscle transplantation between young and old rats: age of host determines recovery. Am. J. Physiol., 256, C1262–C1266.

    PubMed  CAS  Google Scholar 

  • Cates, G.A., Kaur, H. and Sanwal, B.D. (1984) Inhibition of fusion of skeletal myoblasts by tunicamycin and its reversal by N-acetyl glucosamine. Can. J. Biochem. Cell. Biol., 62, 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Cheek, D.B. (1985) The control of cell mass and replication. The DNA unit — a personal 20-year study. Early Hum. Dev., 12, 211–39.

    Article  PubMed  CAS  Google Scholar 

  • Chevallier, A., Pautou, M.P., Harris, A.J. and Kieny, M. (1986) On the non-equivalence of skeletal muscle satellite cells and embryonic myoblasts. Arch d’Anat. Microscop., 75, 161–6.

    Google Scholar 

  • Church, J.C.T. (1969) Satellite cells and myogenesis; a study in the fruit-bat web. J. Anat., 105, 419–38.

    PubMed  CAS  Google Scholar 

  • Clark, R.A.F. and Henson, P.M. (1988) The Molecular and Cell Biology of Wound Repair, Plenum Press, New York, 597 pp.

    Google Scholar 

  • Clegg, C.H., Linkhart, T.A., Olwin, B.B. and Hauschka, S.D. (1987) Growth factor control of skeletal muscle differentiation: Commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J. Cell Biol., 105, 949–56.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, M.G., Prattis, S., Kornegay, J.N. et al. (1991) Affinity purification of myogenic cells for myoblast transfer. J. Cell Biochem., 15C, 36.

    Google Scholar 

  • Conen, P.E. and Bell, C.A. (1970) Study of satellite cells in mature and fetal human muscle and rhabdomyosarcoma, in Regeneration of Striated Muscle and Myogenesis, (eds A. Mauro, S.A. Shafiq and A.T. Milhorat), Exerpta Medica, Amsterdam, 194–211.

    Google Scholar 

  • Cossu, G. and Molinaro, M. (1987) Cell heterogeneity in the myogenic lineage. Cur. Top. Dev. Biol., 23, 185–208.

    Article  CAS  Google Scholar 

  • Cossu, G., Molinaro, M. and Pacific, M. (1983) Differential response of satellite cells and embryonic myoblasts to a tumor promoter. Dev. Biol., 98, 520–4.

    Article  PubMed  CAS  Google Scholar 

  • Cossu, G., Eusebi, F., Grassi, F. and Wanke, E. (1987) Acetylcholine receptors are present in undifferentiated satellite cells but not in embryonic myoblasts in culture. Dev. Biol., 98, 520–4.

    Article  Google Scholar 

  • Cossu, G., Ranaldi, G., Senni, M.I. et al. (1988) Early mammalian myoblasts are resistant to phorbol ester-induced block of differentiation. Development, 102, 65–9.

    PubMed  CAS  Google Scholar 

  • Cossu, G., Cusella-De Angeles, M.G., Senni, M.I. et al. (1989) Adrenocorticotropin is a specific mitogen for mammalian myogenic cells. Dev. Biol., 131, 331–6.

    Article  PubMed  CAS  Google Scholar 

  • Cossu, G., De Angelis, L., Cusella-De Angelis, M.G. and Molinaro, M. (1990) A role for neuropeptides in the proliferation of different classes of myogenic cells during muscle histogenesis. Proc. XIXth European Conference on Muscle Contraction and Cell Motility, (Sept, 1990, Brussels), 43.

    Google Scholar 

  • Covault, J. and Sanes, J.R. (1986) Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle. J. Cell Biol., 102, 716–30.

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy, S.G., Miledi, R., Nakajima, Y. and Uchitel, O.D. (1980) Visualisation of satellite cells in living muscle fibres of the frog. Proc. Roy. Soc. Lond. B., 209, 563–8.

    Article  CAS  Google Scholar 

  • Cusella-De Angelis, M.C., Lyons, G., Sonnino, C. et al. (1992) MyoD1, myogenin independent differentiation of primordial myoblasts in mouse somites. J. Cell. Biol., 116, 1243–55.

    Article  PubMed  CAS  Google Scholar 

  • DiMario, J. and Strohman, R.C. (1988) Satellite cells from dystrophic (mdx) mouse muscle are stimulated by fibroblast growth factor in vitro. Differentiation, 39, 42–9.

    Article  PubMed  CAS  Google Scholar 

  • DiMario, J., Buffinger, N., Yamada, S. and Strohman, R.C. (1989) Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science, 244, 688–90.

    Article  PubMed  CAS  Google Scholar 

  • Duance, C.V., Stephens, H.R., Dunn, M. et al. (1980) A role for collagen in the pathogenesis of muscular dystrophy. Nature, 248, 470–2.

    Article  Google Scholar 

  • Düsterhöft, S., Yablonka-Reuveni, Z. and Pette, D. (1990) Characterization of myosin isoforms in satellite cell cultures from adult rat diaphragm, soleus and tibialis anterior muscles. Differentiation, 45, 185–191.

    Article  PubMed  Google Scholar 

  • Edwall, D., Schalling, M., Jennische, E. and Norstedt, G. (1989) Induction of insulin-like GF-1 messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocr., 124, 820–5.

    Article  CAS  Google Scholar 

  • Eftimie, R., Brenner, H.R. and Buonanno, A. (1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc. Natl. Acad. Sci. USA, 88,1349–53.

    Article  PubMed  CAS  Google Scholar 

  • Enesco, M. and Puddy, D. (1964) Increase in number of nuclei and weight in skeletal muscle of rats of various ages. Am. J. Anat., 114, 235–44.

    Article  PubMed  CAS  Google Scholar 

  • Ewton, D.Z. and Florini, J.R. (1990) Effects of insulin-like growth factors and transforming growth factor-beta on the growth and differentiation of muscle cells in culture. Proc. Soe. Exp. Biol. Med., 194, 76–80.

    CAS  Google Scholar 

  • Ewton, D.Z., Spizz, G.F., Olson, E.N. and Florini, J.R. (1988) Decrease in transforming growth factor-β binding and action during differentiation of muscle cells. J. Biol. Chem., 263, 4029–32.

    PubMed  CAS  Google Scholar 

  • Feit, H., Kawai, M. and Mostafapour, A.S. (1989) Increased resistance of the collagen in avian dystrophic muscle to collagenolytic attack: evidence for increased crosslinking. Muscle Nerve, 12, 476–86.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, J.L. and Stockdale, F.E. (1991a) The temporal appearance of satellite cells during development. J. Cell. Bioehem., 15C, 52.

    Google Scholar 

  • Feldman, J.L. and Stockdale, F.E. (1991b) Skeletal muscle satellite cell diversity: Satellite cells from fibers of different types in cell culture. Dev. Biol., 143, 320–34.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, P.B., Miranda, A.F., Babiss, L.E. et al. (1983) Opposing effects of interferon produced in bacteria and of tumor promoters on myogenesis in human myoblast cultures. Proc. Natl. Aead. Sci. USA, 80, 2961–5.

    Article  CAS  Google Scholar 

  • Flaumenhaft, R., Moscatelli, D., Saksela, O. and Rifkin, D.B. (1989) Role of extracellular matrix in the action of basic fibroblast growth factor: matrix as a source of growth factor for long term stimulation of plasminogen activator production and DNA synthesis. J. Cell. Physiol., 140, 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Florini, J.R. (1987) Hormonal control of muscle growth. Muscle Nerve, 10, 577–98.

    Article  PubMed  CAS  Google Scholar 

  • Florini, J.R., Ewton, D.Z., Falen, S.L. and Van Wyk, J.J. (1986) Biphasic concentration dependency of stimulation of myoblast differentiation by somatomedins. Am. J. Physiol., 250, C771–C778.

    PubMed  CAS  Google Scholar 

  • Florini, J.R. and Magri, K.A. (1989) Effects of growth factors on myogenic differentiation. Am. J. Physiol., 256, C701–C711.

    PubMed  CAS  Google Scholar 

  • Florini, J.R., Ewton, D.Z. and Magri, K.A. (1991a) Hormones, growth factors, and myogenic differentiation. Ann. Rev. Physiol., 53, 201–16.

    Article  CAS  Google Scholar 

  • Florini, J.R., Magri, K.A., Ewton, D.Z. et al. (1991b) ‘Spontaneous’ differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. J. Biol. Chem., 266, 15917–23.

    PubMed  CAS  Google Scholar 

  • Foster, R.F., Thompson, J.M. and Kaufman, S.J. (1987) A laminin substrate promotes myogenesis in rat skeletal muscle cultures: analysis of replication and development using antidesmin and anti-BrdU monoclonal antibodies. Dev. Biol., 122, 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Franzini-Armstrong, C. (1979) Satellite and invasive cells in frog sartorius, in Muscle Regeneration (eds A. Mauro et al.), Raven Press, New York, pp. 233–8.

    Google Scholar 

  • Fuchtbauer, E-M. and Westphal, H. (1992) MyoD and myogenin are co-expressed in regenerating skeletal muscle of the mouse. Devel. Dynam., 193, 34–9.

    Article  CAS  Google Scholar 

  • Funanage, V.L., Schroedl, N.A., Moses, P.A. et al. (1989) Hemin enhances differentiation and maturation of cultured regenerated skeletal myotubes. J. Cell Physiol., 141, 591–7.

    Article  PubMed  CAS  Google Scholar 

  • Gatchalian, C.L., Schachner, M. and Sanes, J.R. (1989) Fibroblasts that proliferate near denervated synaptic sites in skeletal muscle synthesize the adhesive molecules tenascin (J1), N-CAM, fibronectin, and heparan sulfate proteoglycan. J. Cell Biol., 108, 1873–90.

    Article  PubMed  CAS  Google Scholar 

  • George-Weinstein, M., Decker, C. and Horwitz, A. (1988) Combinations of monoclonal antibodies distinguish mesenchymal, myogenic, and chondrogenic precursors of the developing chick embryo. Dev. Biol., 125, 34–50.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, M.C. and Schultz, E. (1983) Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve, 6, 574–80.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, S.L., Deutzmann, R. and Nurcombe, V. (1989) Locomotory competence and laminin-specific cell surface binding sites are lost during myoblast differentiation. Development, 106, 795–802.

    Google Scholar 

  • Godfrey, E.W., Siebenlist, R.E., Wallskog, P.A. et al. (1988) Basal lamina components are concentrated in premuscle masses and at early acetylcholine receptor clusters in chick embryo hindlimb muscles. Dev. Biol., 130, 471–86.

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D. (1990) Fibroblast growth factor: chemical structure and biologic function. Clin. Orth. Rel. Res., 257, 231–48.

    Google Scholar 

  • Grant, A.L., Helferich, W.G., Merkel, R.A. and Bergen, W.G. (1990) Effects of phenethanolamines and propranolol on the proliferation of cultured chick breast muscle satellite cells. J. Anim. Sci., 68, 652–8.

    PubMed  CAS  Google Scholar 

  • Greene, E.A. and Allen, R.E. (1991) Growth factor regulation of bovine satellite cell growth. J. Anim. Sci., 69, 146–52.

    PubMed  CAS  Google Scholar 

  • Grounds, M.D. (1987) Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age and sex of host mice. J. Pathol., 153, 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Grounds, M.D. (1990a) Factors controlling skeletal muscle regeneration in vivo, in Pathogenesis and Therapy of Duchenne and Becker Muscular Dystrophy, (eds B.A. Kakulas and F.L. Mastaglia), Raven Press, New York, pp. 177–85.

    Google Scholar 

  • Grounds, M.D. (1990b) The proliferation and fusion of myoblasts in vivo, in Myoblast Transfer Therapy, (eds A.B. Eastwood, G. Karpati and R. Griggs), Plenum Press, New York, pp. 101–6.

    Chapter  Google Scholar 

  • Grounds, M.D. (1991) Towards understanding skeletal muscle regeneration. Pathol. Res. Pract., 118, 1–22.

    Article  Google Scholar 

  • Grounds, M.D. and McGeachie, J.K. (1989a) Myogenic cells of regenerating adult chicken muscle can fuse into myotubes after a single cell division in vivo. Exp. Cell Res., 180, 429–39.

    Article  PubMed  CAS  Google Scholar 

  • Grounds, M.D. and McGeachie, J.K. (1989b). A comparison of muscle precursor replication in crush injured skeletal muscle of Swiss and BALBc mice. Cell Tiss. Res., 255, 385–91.

    CAS  Google Scholar 

  • Grounds, M.D. and McGeachie, J.K. (1991) Muscle precursor replication in minced skeletal muscle isografts of Swiss and BALBc mice. Muscle Nerve, 123, 305–13.

    Google Scholar 

  • Grounds, M.D. and McGeachie, J.K. (1992) Skeletal muscle regeneration in mdx mice: an autoradiographic study. Muscle Nerve, 15, 580–6.

    Article  PubMed  CAS  Google Scholar 

  • Grounds, M.D., Garrett, K.L. and Beilharz, M.W. (1991a) The expression of MyoD1 and myogenin genes in thymic cells in vivo. Exp. Cell Res., 198, 357–61.

    Article  Google Scholar 

  • Grounds, M.D., Garrett, K.L., Lai, M.C. et al. (1991b) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tiss. Res., 267, 99–104.

    Google Scholar 

  • Groux-Muscatelli, B., Bassaglia, Y., Barritault, D. et al. (1990) Proliferating satellite cells express acidic fibroblast growth factor during in vitro myogenesis. Dev. Biol., 142, 380–5.

    Article  PubMed  CAS  Google Scholar 

  • Gutheridge, M., Wilson, M., Cowling, J. et al. (1992) The role of basic fibroblast growth factor in skeletal muscle regeneration. Growth Factors, 6, 53–63.

    Article  Google Scholar 

  • Gutman, E. and Carlson, B.M. (1976) Regeneration and transplantation of muscles in old rats and between young and old rats. Life Sci., 18, 109–14.

    Article  Google Scholar 

  • Ham, R.G., St Clair, J.A., Webster, C. and Blau, H.M. (1988) Improved media for normal human muscle satellite cells: Serum-free clonal growth and enhanced growth with low serum. In Vitro Cell Dev. Biol., 24, 833–44.

    Article  PubMed  CAS  Google Scholar 

  • Hartley, R.S. and Yablonka-Reuveni, Z. (1990) Long-term maintenance of primary myogenic cultures on a reconstituted basement membrane. In Vitro Cell. Dev. Biol., 26, 955–61.

    Article  PubMed  CAS  Google Scholar 

  • Hartley, R.S., Bandman, E. and Yablonka-Reuveni, Z. (1991) Myoblasts from fetal and adult skeletal muscle regulate myosin expression differently. Dev. Biol., 148, 249–60.

    Article  PubMed  CAS  Google Scholar 

  • Hartley, R.S., Bandman, E. and Yablonka-Reuveni, Z. (1992) Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev. Biol., 153, 206–16.

    Article  PubMed  CAS  Google Scholar 

  • Hathaway, M.R., Hembree, J.R., Pampusch, M.S. and Dayton, W.R. (1991) Effect of transforming growth factor beta-1 on ovine satellite cell proliferation and fusion. J. Cell Physiol., 146, 435–41.

    Article  PubMed  CAS  Google Scholar 

  • Hauschka, S.D. (1974a) Clonal analysis of vertebrate myogenesis. II. Environmental influences upon human muscle differentiation. Dev. Biol., 37, 329–44.

    Article  PubMed  CAS  Google Scholar 

  • Hauschka, S.D. (1974b) Clonal analysis of vertebrate myogenesis. III. Developmental changes in the muscle-colony-forming cells of the human fetal limb. Dev. Biol., 37, 345–68.

    Article  PubMed  CAS  Google Scholar 

  • Hauschka, S.D. and Konigsberg, I.R. (1966) The influence of collagen on the development of muscle clones. Proc. Natl. Acad. Sci., 55, 119–26.

    Article  PubMed  CAS  Google Scholar 

  • Hauschka, S.D., Linkhart, T.A., Clegg, C.H. and Merrill, G.F. (1979) Clonal studies of human and mouse muscle, in Muscle Regeneration, (ed. A. Mauro), Raven Press, New York, pp. 311–21.

    Google Scholar 

  • Helliwell, T.F. (1988) Lectin binding and desmin staining during bupivacaine-induced necrosis and regeneration in rat skeletal muscle. J. Pathol., 155, 317–26.

    Article  PubMed  CAS  Google Scholar 

  • Herrera, A.A. and Banner, L.R. (1990) The use and effects of vital fluorescent dyes: Observation of motor nerve terminals and satellite cells in living muscles. J. Neurocytology, 19, 67–83.

    Article  CAS  Google Scholar 

  • Hurko, O., McKee, L., Zuurveld, J.G.E.M. et al. (1986) Proliferative capacity of Duchenne and wild-type myoblasts derived from a DMD-G6PD double heterozygote, in Molecular Biology of Muscle Development, (eds C. Emerson, D. Fischmann, B. Nadal-Ginard and M.A.Q. Siddiqui), Alan R. Liss, New York, pp. 921–8.

    Google Scholar 

  • Ionasescu, V. and Ionasescu, R. (1982) Increased collagen synthesis by Duchenne myogenic clones. J. Neurol. Sci., 54, 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, H. (1970) Satellite cells in developing muscle and tissue culture, in Regeneration of Striated Muscle and Myogenesis, (eds A. Mauro, S.A. Shafiq and A.T. Milhorat), Exerpta Medica, Amsterdam, 167–79.

    Google Scholar 

  • Jennische, E. (1989) Sequential immunohistochemical expression of IGF-I and the transferrin receptor in regenerating rat muscle in vivo. Acta Endocrinol. (Copenh.), 121, 733–8.

    CAS  Google Scholar 

  • Jennische, E. and Andersson, G.L. (1991) Expression of GH receptor mRNA in regenerating skeletal muscle of normal and hypophysectomised rats as demonstrated by a simple in situ hybridisation method. Acta Endocr., 125, 595–602.

    PubMed  CAS  Google Scholar 

  • Jennische, E. and Hansson, H.A. (1987) Regenerating skeletal muscle cells express insulin-like growth factor 1. Acta Physiol. Scand., 130, 327–32.

    Article  PubMed  CAS  Google Scholar 

  • Jennische, E., Skottner, A. and Hansson, H-A. (1987) Satellite cells express the trophic factor IGF-I in regenerating skeletal muscle. Acta Physiol. Scand., 129, 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Jin, P., Rahm, M., Claesson-Welsh, L. et al. (1990) Expression of PDGF-A chain and beta-receptor genes during rat myoblast differentiation. J. Cell Biol., 110, 1665–72.

    Article  PubMed  CAS  Google Scholar 

  • Jin, P., Sejerson, T. and Ringertz, N.R. (1991a) Recombinant PDGF-BB stimulates growth and inhibits differentiation of rat myoblasts. J. Cell Biochem., 15C, 39.

    Google Scholar 

  • Jin, P., Sejersen, T. and Ringertz, N.R. (1991b) Recombinant platelet-derived growth factor-BB stimulates growth and inhibits differentiation of rat L6 myoblasts. J. Biol. Chem., 266, 1245–9.

    PubMed  CAS  Google Scholar 

  • Jones, G.E., Murphy, S.J. and Watt, D.J. (1990) Segregation of the myogenic cell lineage in mouse muscle development. J. Cell. Sci., 97, 285–93.

    Google Scholar 

  • Jones, G.E., Murphy, S.J., Wise, C. and Watt, D.J. (1991) Macrophage-colony-stimulating factor (CSF-1) stimulates proliferation of myogenic cells. J. Cell. Biochem., 15C, 39.

    Google Scholar 

  • Joseph-Silverstein, J., Consigli, S.A., Lyser, K.M. and Ver Pault, C. (1989) Basic fibroblast growth factor in the chick embryo: immunolocalization to striated muscle cells and their precursors. J. Cell Biol., 108, 2459–66.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, E.B. and Simpson, S.B. (1974) Satellite cells in mature, uninjured skeletal muscle of the lizard tail. Dev. Biol., 37, 219–23.

    Article  PubMed  CAS  Google Scholar 

  • Kardami, E., Spector, D. and Strohman, R.C. (1988) Heparin inhibits skeletal muscle growth in vitro. Dev. Biol., 126, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Kardami, E., Murphy, L., Liu, L. et al. (1990) Characterisation of two preparations of immunoglobulins to basic fibroblast growth factor exhibit distinct patterns of localisation. Growth Factors, 4, 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Karpati, G. (1991) Myoblast transfer in Duchenne muscular dystrophy: A perspective, in Muscular Dystrophy Research, (eds C. Angelini, G.A. Danielli and D. Fontanan) Excerpta Medica, Amsterdam, New York, Oxford, pp. 101–7.

    Google Scholar 

  • Kaufman, S.J. and Foster, R.F. (1988) Replicating myoblasts express a muscle-specific phenotype. Proc. Natl. Acad. Sci. USA, 865, 9606–10.

    Article  Google Scholar 

  • Kaufman, S.J., George-Weinstein, M. and Foster, R.F. (1991) In vitro development of precursor cells in the myogenic lineage. Dev. Biol., 146, 228–38.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, A.M. (1978) Satellite cells and myofibre growth in the rat soleus and extensor digitorum longus muscles. Dev. Biol., 65, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, A.M. and Zacks, S.I. (1969) The histogenesis of rat intercostal muscle. J. Cell Biol., 42,135–53.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, J.M., Eisenberg, B.R., Reid, S.K. et al. (1988) Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle. Amer. J. Anat., 181, 203–15.

    Article  PubMed  CAS  Google Scholar 

  • Kieny, M. and Mauger, A. (1984) Immunofluorescent localization of extracellular matrix components during muscle morphogenesis. I. In normal chick embryos. J. Exp. Zool., 232, 327–41.

    Article  Google Scholar 

  • Konigsberg, I.R. (1963) Clonal analysis of myogenesis. Science, 140, 1273–84.

    Article  PubMed  CAS  Google Scholar 

  • Krieg, T. and Heckmann, M. (1989) Regulatory mechanism of fibroblast activity. Rec. Prog. Mediana, 80, 594–8.

    CAS  Google Scholar 

  • Kuhl, U., Ocalan, M., Timpl, R. and von der Mark, K. (1986) Role of laminin and fibronectin in selecting myogenic versus fibrogenic cells from skeletal muscle cells in vitro. Dev. Biol., 117, 628–35.

    Article  PubMed  CAS  Google Scholar 

  • Kujawa, M.J., Pechak, D.G., Fiszman, M.Y. and Caplan, A.I. (1986) Hyaluronic acid bonded to cell culture surfaces inhibits the program of myogenesis. Dev. Biol., 113, 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Lang, R., Metcalf, D., Cuthbertson, R.A. et al. (1987) Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell, 51, 675–86.

    Article  PubMed  CAS  Google Scholar 

  • Lim, R.W. and Hauschka, S.D. (1984) A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro. J. Cell Biol., 98, 739–41.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, B.H. (1979) Skeletal muscle regeneration in muscular dystrophy, in Muscle Regeneration, (ed. A. Mauro), Raven Press, New York, pp. 101–14.

    Google Scholar 

  • MacConnachie, H.F., Enesco, M. and Leblond, C.P. (1964) The mode of increase in the number of skeletal muscle nuclei in the postnatal rat. Am. J. Anat., 14, 245–53.

    Article  Google Scholar 

  • Manda, P. and Kakulas, B.A. (1986) The effect of the myotoxic agents iodoacetate on dystrophic mice 129/Re. J. Neurol Sci., 75, 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, P.A., Williams, P.E. and Goldspink, G. (1989) Accumulation of collagen and altered fibre-type ratios as indicators of abnormal muscle gene expression in the mdx dystrophic mouse. Muscle Nerve, 12, 528–37.

    Article  PubMed  CAS  Google Scholar 

  • Massague, J., Cheifetz, S., Endo, T. and Nadal-Ginard, B. (1986) Type ß transforming growth factor is an inhibitor of myogenic differentiation. Proc. Natl. Acad. Sci. USA, 83, 8206–10.

    Article  PubMed  CAS  Google Scholar 

  • Massague, J. (1990). The transforming growth factor-β family. Annu. Rev. Cell Biol., 6, 597–641.

    Article  PubMed  CAS  Google Scholar 

  • Mastaglia, F.L., Papadimitriou, J.M. and Kakulas, B.A. (1970) Regeneration of muscle in Duchenne muscular dystrophy. An electron microscope study. J. Neurol. Sci., 11, 425–44.

    Article  PubMed  CAS  Google Scholar 

  • Mastaglia, F.L., Dawkins, R.L. and Papadimitriou, J.M. (1975) Morphological changes in skeletal muscle after transplantation. J. Neurol. Sci., 25, 227–47.

    Article  PubMed  CAS  Google Scholar 

  • Mauro, A. (1961) Satellite cells of skeletal muscle fibres. J. Biophys. Bioehem. Cytol., 9, 493–4.

    Article  CAS  Google Scholar 

  • Mayne, R., Swasdison, S., Sanderson, R.D. and Irwin, M.H. (1989) Extracellular matrix, fibroblasts, and the development of skeletal muscle, in Cellular and Molecular Biology of Muscle Development, (eds L.H. Kedes and F.E. Stockdale), Alan R. Liss, New York, pp. 107–16.

    Google Scholar 

  • Mazanet, R. and Franzini-Armstrong, C. (1980) The satellite cell, in Myology, (eds A.G. Engel and B.Q. Banker), McGraw-Hill Book Co, New York, 1, 285–307.

    Google Scholar 

  • McFarland, D.C., Pesall, J.E., Norberg, J.M. and Dvoracek, M.A. (1991) Proliferation of the turkey myogenic satellite cell in a serum-free medium. Comp. Biochem. Physiol., 99A, 163–7.

    Article  Google Scholar 

  • Miller, J.B. (1991) Myoblasts, myosin, MyoDs, and the diversification of muscle fibres. Neuromuse. Disord., 1, 7–17.

    Article  CAS  Google Scholar 

  • Miller, J.B. and Stockdale, F. (1989) Multiple cellular processes regulate expression of slow myosin heavy chain isoforms during avian myogenesis in vitro. Dev. Biol., 136, 393–404.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J.W., Dionne, C., Jaye, M. and Swain, J. (1991) The mRNAs encoding acidic FGF, basic FGF and FGF receptors are coordinately downregulated during myogenic differentiation. Development, 111, 741–8.

    PubMed  CAS  Google Scholar 

  • Morlet, K., Grounds, M.D. and McGeachie, J.K. (1989) Muscle precursor replication after repeated regeneration of skeletal muscle. Anat. Embryol., 180, 471–8.

    Article  PubMed  CAS  Google Scholar 

  • Moschella, M.C. and Ontell, M. (1987) Transient and chronic neonatal denervation of murine muscle: A procedure to modify the phenotypic expression of muscular dystrophy. J. Neuroscience, 7, 2145–52.

    CAS  Google Scholar 

  • Moss, F.P. and Leblond, C.P. (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat. Rec., 170, 421–36.

    Article  PubMed  CAS  Google Scholar 

  • Mouly, V., Toutant, M. and Fiszman, M.Y. (1987) Chick and quail limb bud myoblasts, isolated at different times during muscle development, express stage-specific phenotypes when differentiated in culture. Cell Diff., 20, 17–25.

    Article  CAS  Google Scholar 

  • Multhauf, C. and Lough, J. (1986) Interferon-mediated inhibition of differentiation in a murine myoblast cell line. J. Cell. Physiol., 126, 211–15.

    Article  PubMed  CAS  Google Scholar 

  • Nameroff, M. and Rhodes, L.D. (1989) Differential response among cells in the chick embryo myogenic lineage to photosensitization by Merocyanine 540. J. Cell Physiol., 141, 475–82.

    Article  PubMed  CAS  Google Scholar 

  • Nandan, D., Clarke, E.P., Ball, E.H. and Sanwal, B.D. (1990) Ethyl-3,4-dihydroxybenzoate inhibits myoblast differentiation: Evidence for an essential role for collagen. J. Cell Biol., 110, 1673–9.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C.F. (1987) Secretory products of macrophages. J. Clin. Invest., 79, 316–26.

    Article  Google Scholar 

  • Nathanson, M.A. (1979) Skeletal muscle metaplasia: formation of cartilage by differentiated skeletal muscle, in Muscle Regeneration (eds A. Mauro et al.), Raven Press, New York, pp. 83–90.

    Google Scholar 

  • Ocalan, M., Goodman, S.L., Kuhl, U. et al. (1988) Laminin alters cell shape and stimulates mobility and proliferation of murine skeletal myoblasts. Dev. Biol., 125, 158–67.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E.N., Sternberg, E., Shan Hu, J. et al. (1986) Regulation of myogenic differentiation by Type β transforming growth factor. J. Cell Biol., 103, 1799–805.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E.N., Brennan, T.R.J., Chakraborty, T. et al. (1991) Molecular control of myogenesis: antagonism between growth and differentiation. Mol. Cell. Biochem., 104, 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Olwin, B. and Hauschka, S.D. (1988) Cell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture. J. Cell Biol., 107, 761–9.

    Article  PubMed  CAS  Google Scholar 

  • Ontell, M. (1974) Muscle satellite cells: A validated technique for light microscopic identification and a quantitative study of changes in their population following denervation. Anat. Rec., 178, 211–28.

    Article  PubMed  CAS  Google Scholar 

  • Ontell, M. (1979) The source of ‘new’ muscle fibres in neonatal muscle, in Muscle Regeneration (eds A. Mauro et al.), Raven Press, New York, 137–47.

    Google Scholar 

  • Ontell, M., Feng, K.C., Klueber, K. et al. (1984) Myosatellite cells, growth, and regeneration in murine dystrophic muscle: A quantitative study. Anat. Rec., 208, 159–74.

    Article  PubMed  CAS  Google Scholar 

  • Ontell, M., Hughes, D., Hauschka, S.D. and Ontell, M. (1991) Dystrophic satellite cell senescence is prevented by neonatal denervation. J. Cell Biochem., 15C, 62.

    Google Scholar 

  • Ozawa, E. (1989). Transferrin as a muscle trophic factor. Dev. Physiol. Biochem. Pharmacol., 113, 89–141.

    Article  CAS  Google Scholar 

  • Ozawa, E. and Hagiwara, Y. (1981) Avian and mammalian transferrins are required for chick and rat myogenic cell growth in vitro, respectively. Proc. Japan Acad. Ser. B, 57, 406–9.

    Article  Google Scholar 

  • Partridge, T.A. (1991a). Animal models of muscular dystrophy — What can they teach us? Neuropathol. Appl. Neurobiol., 17, 353–63.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, T.A. (1991b) Myoblast transplantation: possible therapy for inherited myopathies. Muscle Nerve, 14, 197–212.

    Article  PubMed  CAS  Google Scholar 

  • Podleski, T.R., Greenberg, I., Schlessinger, J. and Yamada, K.M. (1979) Fibronectin delays the fusion of L6 myoblasts. Exp. Cell Res., 122, 317–26.

    Article  PubMed  CAS  Google Scholar 

  • Popiela, H. (1976) Muscle satellite cells in urodele amphibians: facilitated identification of satellite cells using ruthenium red staining. J. Exp. Zool., 198, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Przyblska, J.R. (1983) Satellite cells of chicken’s muscles. Folia Morphol. (Warsaw), 42, 217–27.

    Google Scholar 

  • Quinn, L.S., Nameroff, M. and Holtzer, H. (1984) Age-dependent changes in myogenic precursor cell compartment sizes. Exp. Cell Res., 154, 65–82.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, L.S., Holtzer, H. and Nameroff, M. (1985) Generation of chick skeletal muscle cells in groups of 16 from stem cells. Nature (London), 313, 692–4.

    Article  CAS  Google Scholar 

  • Quinn, L.S., Ong, L.D. and Roeder, R.A. (1990) Paracrine control of myoblast proliferation and differentiation by fibroblasts. Dev. Biol., 140, 8–19.

    Article  PubMed  CAS  Google Scholar 

  • Rieger, F., Grumet, M. and Edelman, G.M. (1985) N-CAM at the vertebrate neuromuscular junction. J. Cell Biol., 101, 285–93.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, P. and McGeachie, J.K. (1990) Endothelial cell activation during angiogenesis in freely transplanted skeletal muscles in mice and its relationship to the onset of myogenesis. J. Anat., 169, 197–207.

    PubMed  CAS  Google Scholar 

  • Roberts, P., McGeachie, J.K., Smith, E.R. and Grounds, M.D. (1989) The initiation and duration of myogenesis in transplants of intact skeletal muscle: an autoradiographic study in mice. Anat. Rec., 224, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, T., Papadimitriou, J.M., Mitchell, C.A. and Grounds, M.D. (1990) Fusion of myogenic cells in vivo: an ultrastructural study of regenerating murine skeletal muscle. J. Struct. Biol., 105, 170–82.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, T.A., Grounds, M.D. and Papadimitriou, J.M. (1992) Elucidation of aspects of murine skeletal muscle regeneration using local and whole body irradiation. J. Anat.

    Google Scholar 

  • Ross, J.J., Duxson, M.J. and Harris, A.J. (1987) Formation of primary and secondary myotubes in rat lumbrical muscles. Development, 100, 395–409.

    PubMed  CAS  Google Scholar 

  • Sadeh, M. (1988) Effects of ageing on skeletal muscle regeneration. J. Neurol. Sci., 87, 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Sanes, J.R. and Cheney, J.M. (1982) Laminin, fibronectin, and collagen in synaptic and extrasynaptic portions of muscle fibre basement membrane. J. Cell Biol., 93, 442–51.

    Article  PubMed  CAS  Google Scholar 

  • Sanes, J.R., Schachner, M. and Covault, J. (1986) Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J. Cell Biol., 102, 420–31.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, W., Zimmerman, K., Cramer, M. and Starzinski-Powitz, A. (1989) Lymphocyte antigen Leu-19 as a molecular marker of regeneration in human skeletal muscle. Proc. Natl. Acad. Sci., 86, 307–11.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E. (1979) Quantification of satellite cells in growing muscle using electron microscopy and fibre whole mounts, in Muscle Regeneration (ed. A. Mauro), Raven Press, New York, 131–5.

    Google Scholar 

  • Schultz, E. and Lipton, B.H. (1982) Skeletal muscle satellite cells changes in proliferation potential as a function of age. Mech. Ageing, Dev., 20, 377–83.

    Article  CAS  Google Scholar 

  • Schultz, E., Jaryszak, B.A. and Valliere, C.R. (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve, 8, 217–22.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer, J.A., Dichter, M.A. and Kaufman, S.J. (1987) Fibroblasts modulate expression of Thy-1 on the surface of skeletal myoblasts. Exp. Cell Res., 172, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Seed, J. and Hauschka, S.D. (1988) Clonal analysis of vertebrate myogenesis. VIII. Fibroblast growth factor (FGF)-dependent and FGF-independent muscle colony types during chick wing development. Dev. Biol., 128, 40–9.

    Article  PubMed  CAS  Google Scholar 

  • Senni, M.I., Castrignano, F., Poiana, G. et al. (1987) Expression of adult fast pattern of acetylcholinesterase molecular forms by mouse satellite cells in culture. Differentiation, 36, 194–8.

    Article  PubMed  CAS  Google Scholar 

  • Snow, M.H. (1977) The effects of ageing on satellite cells in skeletal muscles of mice and rats. Cell Tiss. Res., 185, 399–408.

    CAS  Google Scholar 

  • Snow, M.H. (1979) Origin of regenerating myoblasts in mammalian skeletal muscle, in Muscle Regeneration (eds A. Mauro et al.), Raven Press, New York, pp. 91–100.

    Google Scholar 

  • Sporn, M.B., Roberts, A.B., Wakefield, L.M. and de Crombrugghe, B. (1987) Some recent advances in the chemistry and biology of transforming growth factor-beta. J. Cell Biol., 105, 1039–45.

    Article  PubMed  CAS  Google Scholar 

  • Stedman, H.H., Sweeney, H.L., Shrager, J.B. et al. (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature, 352, 536–9.

    Article  PubMed  CAS  Google Scholar 

  • Stockdale, F.E. and Miller, J.B. (1987) The cellular basis of myosin heavy chain isoform expression during the development of avian skeletal muscles. Dev. Biol., 123, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Studitsky, A.N. (1988) in Transplantation of muscles in animals, (ed. B.A. Carlson), Amerind Publ. Co. Pvt. Ltd., New Dehli (originally published in Russian in 1977) pp. 211.

    Google Scholar 

  • Summers, P.J. and Parsons, R. (1981) An electron microscopic study of satellite cells and regeneration in dystrophic mouse muscle. Neuropathol. Appl. Neurobiol., 7, 257–68.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, P.R. and Brown, R.G. (1981) The aetiology of muscular dystrophy in mammals — a new perspective and hypothesis. Comp. Biochem. Physiol., 70B, 27–33.

    Google Scholar 

  • Tassin, A-M., Mege, R-M., Goudou, D. et al. (1991) Modulation of expression and cell surface distribution of N-CAM during myogenesis in vitro. Neurochem, 18, 97–106.

    Article  CAS  Google Scholar 

  • Trupin, G.L., Hsu, L. and Hsieh, Y-H. (1979) Satellite cell mimics in regenerating skeletal muscle, in Muscle Regeneration, (eds A. Mauro et al.), Raven Press, New York, pp. 101–14.

    Google Scholar 

  • Ullman, M., Ullman, A., Sommerland, H. et al. (1990) Effects of growth hormone on muscle regeneration and IGF-I concentration in older rats. Acta Physiol. Scand., 140, 521–5.

    Article  PubMed  CAS  Google Scholar 

  • Valentine, B.A. and Cooper, B.J. (1991) Canine X-linked muscular dystrophy: selective involvement of muscles in neonatal dogs. Neuromusc. Disord., 1, 31–8.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh, H., Karlisch, P. and Farr, L. (1988) Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In vitro Cell Dev. Biol., 24, 166–74.

    Article  PubMed  CAS  Google Scholar 

  • Venable, J.H. and Lorenz, M.D. (1970) Trial analysis of the cytokinetics of a rapidly growing skeletal muscle, in Regeneration of Striated Muscle and Myogenesis, (eds A. Mauro, S.A. Shafiq and A.T. Milhorat), Exerpta Medica, Amsterdam, 271–8.

    Google Scholar 

  • Vivarelli, E., Brown, W.E., Whalen, R.G. and Cossu, G. (1988) The expression of slow myosin during mammalian somitogenesis and limb bud differentiation. J. Cell Biol., 107, 2191–7.

    Article  PubMed  CAS  Google Scholar 

  • Von der Mark, K. and Ocalan, M. (1989) Antagonistic effects of laminin and fibronectin on the expression of the myogenic phenotype. Differentiation, 40, 150–7.

    Article  PubMed  Google Scholar 

  • Wakshull, E., Bayne, E.K., Chiquet, M. and Fambrough, D.M. (1983) Characterization of a plasma membrane glycoprotein common to myoblasts, skeletal muscle satellite cells, and glia. Dev. Biol., 100, 464–77.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, F.S., Dickson, G., Moore, S.E. and Barton, C.H. (1989) Unmasking N-CAM. Nature, 339, 516.

    Article  PubMed  CAS  Google Scholar 

  • Walton, J. (1982) The role of limited cell replicative capacity in pathological age change: a review. Mech. Age. Develop., 19, 217–44.

    Article  CAS  Google Scholar 

  • Webster, C., Filippi, G., Rinaldi, A. et al. (1986) The myoblast defect identified in Duchenne muscular dystrophy is not a primary expression of the DMD mutation. Hum. Genet., 74, 74–80.

    Article  PubMed  CAS  Google Scholar 

  • Webster, C., Pavlath, G.K., Parks, D.R. et al. (1988) Isolation of human myoblasts with the fluorescence-activated cell sorter. Exp. Cell Res., 174, 252–65.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub, H., Davis, R., Tapscott, S. et al. (1991) The MyoD gene family: nodal point during specification of the muscle cell lineage. Science, 251, 761–6.

    Article  PubMed  CAS  Google Scholar 

  • White, N.K., Bonner, P.H., Nelson, D.R. and Hauschka, S.D. (1975) Clonal analysis of vertebrate myogenesis. IV. Medium-dependent classification of colony-forming cells. Dev. Biol., 44, 346–61.

    Article  PubMed  CAS  Google Scholar 

  • White, T.P. and Essser, K.A. (1989) Satellite cell and growth factor involvement in skeletal muscle growth. Med. Sci. Sports Exerc., 21, S158–S163.

    PubMed  CAS  Google Scholar 

  • Wilson, S.J., McEwan, J.C., Sheard, P.W. and Harris, A.J. (1992) Early stages of myogenesis in a large mammal: formation of successive generations of myotubes in sheep tibialis cranialis muscle. J. Muse. Res. Cell Motility., 13, 534–50.

    Article  CAS  Google Scholar 

  • Witowski, J.A. (1986) Tissue culture studies of muscle disorders: Part 1. Techniques, cell growth, morphology, cell surface. Muscle Nerve, 9, 191–207.

    Article  Google Scholar 

  • Wright, W.E. (1985) Myoblast senescence in muscular dystrophy. Exp. Cell Res., 157, 343–54.

    Article  PubMed  CAS  Google Scholar 

  • Wright, W.E. and Shay, J.W. (1992) Telomere positional effects and the regulation of cellular senescence. Trends Genet., 8, 193–7.

    Article  PubMed  CAS  Google Scholar 

  • Wright, W.E., Sassoon, D.A. and Lin, V.K. (1989) Myogenin, a factor regulating myogenesis has a domain homologous to MyoD1. Cell, 56, 607–17.

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni, Z. (1988a) Identification of satellite cell-specific antigens. J. Cell Biochem., Suppl. 12C, 334.

    Google Scholar 

  • Yablonka-Reuveni, Z. (1988b) Discrimination of myogenic and nonmyogenic cells from embryonic skeletal muscle by 900 light scattering. Cytometry, 9, 121–5.

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni, Z. (1989) Application of density centrifugation and flow cytometry for the isolation of fibroblast-like cells from embryonic and adult skeletal muscle, in Cellular and Molecular Biology of Muscle Development, (eds L.H. Kedes and F.E. Stockdale), Alan R. Liss, New York, pp. 869–79.

    Google Scholar 

  • Yablonka-Reuveni, Z. and Nameroff, M. (1987) Skeletal muscle cell populations: separation and partial characterization of fibroblast-like cells from embryonic tissue using density centrifugation. Histochemistry, 87, 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni, Z., Quinn, L.S. and Nameroff, M. (1987) Isolation and clonal analysis of satellite cells from chicken pectoralis muscle. Dev. Biol., 119, 252–9.

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni, Z., Anderson, S.K., Bowen-Pope, D.F. and Nameroff, M. (1988) Biochemical and morphological differences between fibroblasts and myoblasts from embryonic chicken skeletal muscle. Cell Tissue Res., 252, 339–48.

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni, Z. and Nameroff, M. (1990) Temporal differences in desmin expression between myoblasts from embryonic and adult skeletal muscle. Differentiation, 45, 21–8.

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni, Z., Balestreri, T.M. and Bowen-Pope, D.F. (1990a) Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J. Cell Biol., 111, 1623–9.

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni, Z., Bowen-Pope, D.F. and Hartley, R.S. (1990b) Proliferation and differentiation of myoblasts: The role of platelet-derived growth factor and the basement membrane, in The Dynamic State of Muscle Fibers, (ed. D. Pette), Walter de Gruyter, Berlin, 693–706.

    Google Scholar 

  • Yablonka-Reuveni, Z., Bowen-Pope, D.F. and Balestreri, T.M. (1990c) Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. J. Cell Biol., 5, 32a.

    Google Scholar 

  • Yablonka-Reuveni, Z., and Seifert, R.A. (1993) Proliferation of chicken myoblasts is regulated by specific isoforms of platelet-derived growth factor: evidence for differences between myoblasts from mid and late stages of embryogenesis. In press.

    Google Scholar 

  • Yaffe, D. (1973) Rat skeletal muscle myoblasts, in Tissue culture: Methods and Applications, (eds P.F. Kruse and M.K. Patterson), Academic Press, New York, pp. 106–14.

    Google Scholar 

  • Yaffe, D. and Saxel, O. (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 270, 725–7.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, S., Buffinger, N., DiMario, J. and Strohman, R.C. (1989) Fibroblast growth factor is stored in fiber extracellular matrix and plays a role in regulating muscle hypertrophy. Med. Sci. Sports Exerc., 21, S173–S180.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, A., Katagiri, T., Ikeda, T. et al. (1991) Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. J. Cell Biol., 113, 681–7.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, M. (1985) Changes in hyaluronic acid synthesis during differentiation of myogenic cells and its relation to transformation of myoblasts by rous sarcoma virus. Cell Diff., 16, 175–85.

    Article  CAS  Google Scholar 

  • Zacharias, J.M. and Anderson, J.E. (1991) Muscle regeneration after imposed injury is better in younger than older mdx mice. J. Neurol. Sci., 104, 190–6.

    Article  PubMed  CAS  Google Scholar 

  • Zacks, S.I. and Sheff, M.F. (1982) Age-related impeded regeneration of mouse minced anterior tibial muscle. Muscle Nerve, 5, 152–61.

    Article  PubMed  CAS  Google Scholar 

  • Zalin, R.J. (1979) The cell cycle, myoblast differentiation and prostaglandin as a developmental signal. Dev. Biol., 71, 274–88.

    Article  PubMed  CAS  Google Scholar 

  • Zalin, R.J. (1987) The role of hormones and prostanoids in the in vitro proliferation and differentiation of human myoblasts. Exp. Cell Res., 172, 265–81.

    Article  PubMed  CAS  Google Scholar 

  • Zerba, A., Komorowski, T.E. and Faulkner, J.A. (1990) Free radical injury to skeletal muscles of young and old rats. Am. J. Physiol., 258 (Cell Physiol 27) C429–C435.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grounds, M.D., Yablonka-Reuveni, Z. (1993). Molecular and cell biology of skeletal muscle regeneration. In: Partridge, T. (eds) Molecular and Cell Biology of Muscular Dystrophy. Molecular and Cell Biology of Human Diseases Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1528-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1528-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4667-1

  • Online ISBN: 978-94-011-1528-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics