Skip to main content

Genotype × environment interaction and adaptation

  • Chapter
Plant Breeding

Part of the book series: Plant Breeding Series ((PLBR))

Abstract

This chapter has two objectives: first, to discuss implications of genotype by environment interaction (G×E) for breeding and second, to present major statistical models for assessing genotypic adaptation. We concentrate on widely used methodologies and on that which we believe will be extensively applied, but acknowledge the subjective element in such decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard, R.W. (1960), Principles of Plant Breeding, John Wiley, Chichester.

    Google Scholar 

  • Atlin, G.N. and Frey, K.J. (1989), Breeding crop varieties for low-input agriculture. Am. J. Alternative Agric., 4, 53–58.

    Article  Google Scholar 

  • Baker, R.J. (1971), Effects of stem rust and leaf rust of wheat on genotype—environment interaction for yield. Can. J. Plant Sci., 51, 457–461.

    Article  Google Scholar 

  • Baker, R.J. (1988), Tests for crossover genotype—environmental interactions. Can. J. Plant Sci., 68, 405–410.

    Article  Google Scholar 

  • Barah, B.C., Binswanger, H.P., Rana, B.S. and Rao, N.G.P. (1981), The use of risk aversion in plant breeding; concept and application. Euphytica, 30, 451–458.

    Article  Google Scholar 

  • Basford, K., Kroonenburg, P.M., DeLacy, I.H. and Lawrence, P.K. (1990), Multiattribute evaluation of regional cotton trials. Theor. Appl. Genet., 79, 225–234.

    Article  Google Scholar 

  • Becker, H.C. (1981), Correlations among some statistical measures of phenotypic stability. Euphytica, 30, 835–840.

    Article  Google Scholar 

  • Binswanger, H.P. and Barah, B.C. (1980), Yield Risk, Risk Aversion, and Genotype Selection: Conceptual Issues and Approaches. Research Bulletin 3, ICRISAT, Patancheru.

    Google Scholar 

  • Blum, A., Poyarkova, H., Golan, G. and Mayer, J. (1983), Chemical desiccation of wheat plants as a simulator of post-anthesis stress. I. Effects on translocation and kernel growth. Field Crops Res., 6, 51–58.

    Article  Google Scholar 

  • Bolanos, J. and Edmeades, G.O. (1988), CIMMYT’s strategies in breeding for drought tolerance in tropical maize. In Challenges in Dryland Agriculture — a Global Perspective, Unger, P.W., Jordan, W.R., Sneed T.V. and Jensen, R.W. (eds), Texas Agricultural Experiment Station, College Station, pp. 752–754.

    Google Scholar 

  • Brennan, J.P. (1986), Impact of the Wheat Varieties from CIMMYT on Australian Wheat Production. Agricultural Economics Bulletin 5, Department of Agriculture New South Wales.

    Google Scholar 

  • Brennan, P.S., Byth, D.E., Drake, D.W., De Lacy, I.H. and Butler, D.G. (1981), Determination of the location and number of test environments for a wheat cultivar evaluation program. Aust. J. Agric. Res., 32, 189–201.

    Article  Google Scholar 

  • Byth, D.E., Eisemann, R.L. and De Lacy, I.H. (1976), Two-way pattern analysis of a large data set to evaluate genotypic adaptation. Heredity, 37, 215–230.

    Article  Google Scholar 

  • Campbell, L.G. and Lafever, H.N. (1977), Cultivar × environment interaction in soft red winter wheat yield tests. Crop Sci., 17, 604–608.

    Article  Google Scholar 

  • Ceccarelli, S. (1989), Wide adaptation: How wide? Euphytica, 40, 197–205.

    Google Scholar 

  • Ceccarelli, S., Nachit, M.M., Ferrara, G.O., Mekni, M.S., Tahir, M., van Leur, J. and Srivastava, J.P. (1987), Breeding strategies for improving cereal yield and stability under drought. In Drought Tolerance in Winter Cereals, Srivastava, J.P., Porceddu, E., Acevedo, E. and Varma, S. (eds), John Wiley, Chichester, pp. 101–114.

    Google Scholar 

  • CIMMYT (1990), Results of 1987–1988 Triticale Nurseries, CIMMYT, Mexico, D.F.

    Google Scholar 

  • CIMMYT (1991), Results of the Ninth Elite Selection Wheat Yield Trial 1987–88, CIMMYT, Mexico, D.F.

    Google Scholar 

  • Crossa, J. (1990), Statistical analyses of multilocation trials. Adv. Agron., 44, 55–85.

    Article  Google Scholar 

  • Crossa, J., Fox, P.N., Pfeiffer, W.H., Rajaram, S. and Gauch, H.G. (1991), AMMI adjustment for statistical analysis of an international wheat yield trial. Theor. Appl. Genet., 81, 27–37.

    Article  Google Scholar 

  • Crossa, J., Gauch, H.G. and Zobel, R.W. (1990), Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci., 30, 493–500.

    Article  Google Scholar 

  • DeLacy, I.H., Eisemann, R.L. and Cooper, M. (1990), The importance of genotype-by-environment in regional variety trials. In Genotype-by-Environment Interaction and Plant Breeding, Kang, M.S. (ed.), Louisiana State University, Baton Rouge, pp. 287–300.

    Google Scholar 

  • Eisemann, R.L., Cooper, M. and Woodruff, D.R. (1990), Beyond the analytical methodology — better interpretation and exploitation of genotype-by-environment interaction in breeding. In Genotype-by-Environment Interaction and Plant Breeding, Kang, M.S. (ed.), Louisiana State University, Baton Rouge, pp. 108–117.

    Google Scholar 

  • Finlay, K.W. and Wilkinson, G.N. (1963), The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res., 14, 742–754.

    Article  Google Scholar 

  • Rinn, J.C. and Garrity, D.P. (1989), Yield stability and modern rice technology. In Variability in Grain Yields: Implications for Agricultural Research and Policy in Developing Countries, Anderson, J.R. and Hazell, P.B.R. (eds), John Hopkins University Press, Baltimore, pp. 251–264.

    Google Scholar 

  • Fox, P.N. and Rosielle, A.A. (1982a), Reducing the influence of environmental main-effects on pattern analysis of plant breeding environments. Euphytica, 31, 645–656.

    Article  Google Scholar 

  • Fox, P.N. and Rosielle, A.A. (1982b) Reference sets of genotypes and selection for yield in unpredictable environments. Crop Sci., 22, 1171–1175.

    Article  Google Scholar 

  • Fox, P.N., Rosielle, A.A. and Boyd, W.J.R. (1985), The nature of genotype × environment interactions for wheat yield in Western Australia. Field Crops Res., 11, 387–398.

    Article  Google Scholar 

  • Fox, P.N., Skovmand, B., Thompson, B.K., Braun, H.-J. and Cormier, R. (1990), Yield and adaptation of hexaploid spring triticale. Euphytica, 47, 57–64.

    Article  Google Scholar 

  • Gauch, H.G. (1990), Full and reduced models for yield trials. Theor. Appl. Genet., 80, 153–160.

    Article  Google Scholar 

  • Gauch, H.G. and Zobel, R.W. (1988), Predictive and postdictive success of statistical analyses of yield trials. Theor. Appl. Genet., 76, 1–10.

    Article  Google Scholar 

  • Huehn, M. (1990), Nonparametric estimation and testing of genotype × environment interactions by ranks. In Genotype-by-Environment Interaction and Plant Breeding, Kang, M.S. (ed.), Louisiana State University, Baton Rouge, pp. 69–93.

    Google Scholar 

  • Ketata, H., Yau, S.K. and Nachit M. (1989), Relative consistency of performance across environments. Communicated to Int. Symp. Physiol. Breed. Winter Cereals for Stressed Mediterranean Environ, Montpellier, July 3–6, 1989.

    Google Scholar 

  • Knight, R. (1970), The measure and interpretation of genotype-environment interactions. Euphytica, 19, 225–235.

    Article  Google Scholar 

  • Kroonenburg, P.M. and Basford, K. (1989), An investigation of multi-attribute genotype response across environments using three-mode principal component analysis. Euphytica, 44, 109–123.

    Article  Google Scholar 

  • Lawn, R.J. (1988), Breeding for improved plant performance in drought-prone environments. In Drought Research Priorities for the Dry Land Tropics, Bidinger, F.R., and Johansen, C. (eds), ICRISAT, Patancheru.

    Google Scholar 

  • Lin, C.S. and Binns, M.R. (1985), Procedural approach for assessing cultivar × location data. Pairwise genotype-environment of test cultivars with check. Can. J. Plant Sci., 65, 1065–1071.

    Article  Google Scholar 

  • Lin, C.S., Binns, M.R. and Lefkovitch, L.P. (1986), Stability analysis: where do we stand. Crop Sci., 26, 894–900.

    Article  Google Scholar 

  • Ludlow, M.M. and Muchow, R.C. (1989), A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron., 43, 107–153.

    Article  Google Scholar 

  • Marshall, D.R. (1987), Australian plant breeding strategies for rainfed areas. In Drought Tolerance in Winter Cereals, Srivastava, J.P., Porceddu, E., Acevedo, E. and Varma, S. (eds), John Wiley, Chichester, pp. 89–99.

    Google Scholar 

  • Menz, K.M. (1980), A comparative analysis of wheat adaptation across international environments using stochastic dominance and pattern analysis. Field Crops Res., 3, 33–41

    Article  Google Scholar 

  • Molina-Cano, J.L., García del Moral, L.F., Ramos, J.M., García del Moral, M.B., Jimenez-Tejada, P., Romagosa, I. and Roca de Togores, F. (1990), Quantitative phenotypical expression of three mutant genes in barley and the basis for defining an ideotype for Mediterranean environments. Theor. Appl. Genet., 80, 762–768.

    Article  Google Scholar 

  • Patel, J.D., Reinbergs, E., Mather, D.E., Choo, T.M. and Sterling, J.D.E. (1987), Natural selection in a doubled-haploid mixture and a composite cross of barley. Crop Sci., 27, 474–479.

    Article  Google Scholar 

  • Peterson, C.J. and Pfeiffer, W.H. (1989), International winter wheat evaluation: relationships among test sites based on cultivar performance. Crop Sci., 29, 276–282.

    Article  Google Scholar 

  • Pfeiffer, W.H. and Braun, H.J. (1989) Yield stability in bread wheat. In Variability in Grain Yields: Implications for Agricultural Research and Policy in Developing Countries, Anderson, J.R. and Hazell, P.B.R. (eds), Johns Hopkins University Press, Baltimore, pp. 157–174.

    Google Scholar 

  • Plaisted, R.L. and Peterson, L.C. (1959), A technique for evaluation the ability of selection for yield consistency in different locations or seasons. Am. Potato J., 36, 381–385.

    Article  Google Scholar 

  • Rathjen, A.J. and Pederson, D.G. (1986), Selecting for improved grain yields in variable environments. DSIR Plant Breeding Symposium. Special Publication 5, N.Z. Agronomy Society.

    Google Scholar 

  • Richards, R.A. (1982), Breeding and selection for drought resistance in wheat. In Drought Resistance in Crops with Emphasis on Rice, IRRI, Manila, pp. 303–316.

    Google Scholar 

  • Romagosa, I., Fox, P.N., García del Moral, L.F., Ramos, J.M., García del Moral, B., Roca de Togores, F. and Molina-Cano, J.L. (1993) Integration of statistical and physiological analyses and adaptation of near-isogenic barley lines. Theor. Appl. Genet., in press.

    Google Scholar 

  • Roseille, A.A. and Hamblin, J. (1981), Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci., 21, 943–946.

    Article  Google Scholar 

  • Royo, C., Romagosa, I. and Rodriguez, A. (1991), Comparative adaptation of triticale and spring wheat in Spain. In Proc. Second Int. Triticale Symp., CIMMYT, Mexico, D.F., pp. 593–597.

    Google Scholar 

  • Seif, E. and Pederson, D.G. (1978), Effect of rainfall on the grain yield of spring wheat, with an application to the analysis of adaptation. Aust. J. Agric. Res., 29, 1107–1115.

    Article  Google Scholar 

  • Shukla, G.K. (1972), Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29, 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds, N.W. (1979), Principles of Crop Improvement, Longman Group Limited, London.

    Google Scholar 

  • Steel, R.G.D. and Torrie, J.H. (1980), Principles and Procedures of Statistics, 2nd edn., McGraw-Hill, New York.

    Google Scholar 

  • Whan, B.R., Anderson, W.K., Gilmour, R.F., Snelling, K.L., Regan, N.C. and Turner, N.C. (1991), A role for physiology in breeding for improved wheat yield under drought stress. In Physiology-Breeding of Winter Cereals for Stressed Mediterranean Environments, Acevedo, E., Conesa, A.P., Monneveux, P. and Srivastava, J.P. (eds), INRA-ICARDA, Versailles, pp. 179–194.

    Google Scholar 

  • Wricke, G. (1964), Zur Berechnung der Ökovalenz bei Sommerweizen und Hafer. Z. Pflanzenzüchtg., 52, 127–138.

    Google Scholar 

  • Zobel, R.W., Wright, M.J. and Gauch, H.G. (1988), Statistical analysis of a yield trial. Agron. J., 80, 388–393.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Romagosa, I., Fox, P.N. (1993). Genotype × environment interaction and adaptation. In: Hayward, M.D., Bosemark, N.O., Romagosa, I., Cerezo, M. (eds) Plant Breeding. Plant Breeding Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1524-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1524-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4665-7

  • Online ISBN: 978-94-011-1524-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics