Skip to main content

The Medieval Solar Activity Maximum

  • Chapter
The Medieval Warm Period

Abstract

Paleoclimatic studies of the Medieval Solar Maximum (c. A.D. 1100–1250, corresponding with the span of the Medieval Warm Epoch) may prove useful because it provides a better analog to the present solar forcing than the intervening era. The Medieval Solar Activity Maximum caused the cosmogenic isotope production minimum during the 12th and 13th Centuries A.D. reflected by Δ14C and 10Be records stored in natural archives. These records suggest solar activity has returned to Medieval Solar Maximum highs after a prolonged period of reduced solar activity. Climate forcing by increased solar activity may explain some of this century’s temperature rise without assuming unacceptably high climate sensitivity. By analogy with the Medieval Solar Activity Maximum, the contemporary solar activity maximum may be projected to last for 150 years. The maximum temperature increase forced by increased solar activity stays well below the predicted doubled atmospheric CO2 greenhouse forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beer, J., Raisbeck, G. M., and Yiou, F.: 1991, Time Variations of 10Be and Solar Activity’, in Sonett, C. P., Giampapa, M. S., and Matthews, M. S. (eds.), The Sun in Time, University of Arizona Press, Tucson, 343 pp.

    Google Scholar 

  • Bradley, R. S.: 1985, Quarternary Paleoclimatology: Methods of Paleoclimatic Reconstruction, Allen and Unwin, Boston, p. 472.

    Google Scholar 

  • Damon, P. E. and Jirikowic, J. L.: 1992a, ‘Radiocarbon Evidence for Low Frequency Solar Oscillations’, in Povinec, P. (ed.), Rare Nuclear Decay Processes: Proceedings of the 14th European Physics Society Meeting, Bratislava, October 1990, 457 pp.

    Google Scholar 

  • Damon, P. E. and Jirikowic, J. L.: 1992b, ‘Solar Forcing of Global Climate Change?’, In Taylor, R. E., Long, A., and Kra, R. (eds.), Four Decades of Radiocarbon, Springer-Verlag, New York, 117 pp.

    Google Scholar 

  • Damon, P. E. and Sonett, C. P.: 1991, ‘Solar and Terrestrial Components of the Atmospheric 14C Variation Spectrum’, in Sonett, C. P., Giampapa, M. S., and Matthews, M. S. (eds.), The Sun in Time, University of Arizona press, Tucson, 360 pp.

    Google Scholar 

  • Eddy, J. A.: 1976, The Maunder Minimum’, Science 192, 1189–1202.

    Article  Google Scholar 

  • Eddy, J. A.: 1977, ‘Climate and the Changing Sun’, Climatic Change 1, 173.

    Article  Google Scholar 

  • Grove, J. M.: 1991, The Little Ice Age, Routledge, London, p. 498.

    Google Scholar 

  • Hansen, J. E. and Lacis, A. A.: 1990, ‘Sun and Dust versus Greenhouse Gases: As Assessment of Their Relative Roles in Global Climate Change’, Nature 346, 713.

    Article  Google Scholar 

  • Hansen, J. E. and Lebedeff, S.: 1988, ‘Global Surface Air Surface Temperatures Update through 1987’, Geophys. Res. Let. 15, 323.

    Article  Google Scholar 

  • Hastenrath, S. and Kruss, P. D.: 1992, ‘Greenhouse Indicators in Kenya’, Science 355, 503.

    Google Scholar 

  • Hood, L. L. and Jirikowic, J. L.: 1990, ‘Recurring Variations of a Probable Solar Origin on the Atmospheric Δ14C Record’, Geophys. Res. Let. 17, 85.

    Article  Google Scholar 

  • Jones, P. D., Wigley, T. M. L., and Wright, P. B.: 1986, ‘Global Temperature Variation between 1862 and 1984’, Nature 322, 430.

    Article  Google Scholar 

  • Lamb, H. H.: 1965, ‘The Early Medieval Warm Epoch and Its Sequel’, Paleogeog., Paleoclim., Paleoecol. 1, 13.

    Article  Google Scholar 

  • Lean, J., Skumanich, A., White, O.: 1992, ‘Estimating the Sun’s Radiative Output during the Maunder Minimum’, Geophys. Res. Let. 19, 1591.

    Article  Google Scholar 

  • O’Brien, K., de al Zerda Lerner, A., Shea, M. A., and Smart, D. F.: 1991, ‘The Production of Cosmogenic Isotopes in the Earth’s Atmosphere and Their Inventories’, in Sonett, C. P., Giampapa, M. S., and Matthews, M. S. (eds.), The Sun in Time, Tucson, University of Arizona Press, 317 pp.

    Google Scholar 

  • Raisbeck, G. M., Yiou, F., Jouzel, J., and Petit, J. R.: 1990, ‘1Be and δ2H in Polar Ice Cores as a Probe of the Solar Variability’s Influence on Climate’, Phil. Trans. R. Soc. Lond. A330, 463.

    Article  Google Scholar 

  • Reid, G. C. and Gage, K. S.: 1988, ‘The Climatic Impact of Secular Variations in Solar Irradiance’, in Stephenson, F. R. and Wolfdale, A. W. (eds.), Secular, Solar, and Geomagnetic Variations in the Last 10,000 Years, Kluwer Academic Press, Dordrecht, 225 pp.

    Google Scholar 

  • Rothlisberger, F.: 1986, 10000 Jahre Gletschergeschichte der Erde, Aarau, Verlag Sauerlander, p. 416.

    Google Scholar 

  • Schatten, K. H. and Arking, A. (eds.): 1990, Climate Impact of Solar Variability, NASA Conference Publication 3086, p. 376.

    Google Scholar 

  • Stuiver M. and Pearson G. W. 1986 ‘High Precision Calibration of the Radiocarbon Time Scale A.D. 1950–500 BC in Stuiver M. and Kra R. S. eds. Radiocarbon 282B 805

    Google Scholar 

  • Stuiver, M. and Quay, P. D.: 1980, ‘Changes in Atmospheric Carbon-14 Attributed to a Variable Sun’, Science 207, 11.

    Article  Google Scholar 

  • Wigley, T. M. L.: 1988, ‘The Climate of the Past 10,000 Years and the Role of the Sun’, in Stephenson, F. R. and Wolfdale, A. W. (eds.), Secular, Solar, and Geomagnetic Variations in the Last 10,000 Years, Kluwer Academic Press, Dordrecht, 209 pp.

    Google Scholar 

  • Wigley, T. M. L. and Kelly, P. M.: 1990, ‘Holocene Climate Change, 14C Wiggles and Variations in Solar Irradiance’, Phil. Trans. R. Soc. of Lond. A330, 547.

    Article  Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 1987, ‘Thermal Expansion of Sea Water Associated with Global Warming’, Nature 330, 127.

    Article  Google Scholar 

  • Willson, R. C. and Hudson, H. S.: 1988, ‘Solar Luminosity Variations in the Solar Cycle’, Nature 332, 810.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jirikowic, J.L., Damon, P.E. (1994). The Medieval Solar Activity Maximum. In: Hughes, M.K., Diaz, H.F. (eds) The Medieval Warm Period. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1186-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1186-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4518-6

  • Online ISBN: 978-94-011-1186-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics