Skip to main content

Magnetic resonance techniques for the assessment of myocardial viability

  • Chapter
Myocardial viability

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 154))

Abstract

With the application of magnetic resonance (MR) imaging techniques in clinical cardiology, important tools have been added to the currently available diagnostic arsenal for the evaluation of patients with coronary artery disease [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van der Wall EE, De Roos A (eds). Magnetic Resonance Imaging in Coronary Artery Disease. Dordrecht: Kluwer Academic Publishers 1991.

    Google Scholar 

  2. van der Wall EE, De Roos A, Van Voorthuisen AE, Bruschke AVG. Magnetic resonance imaging: A new approach for evaluating coronary artery disease? Am Heart J 1991; 121: 1203–1220.

    Article  PubMed  Google Scholar 

  3. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985; 72: V123–V135.

    Article  PubMed  CAS  Google Scholar 

  4. Bodenheimer MM, Banka VS, Hermann GA, Trout RG, Pasdar H, Helfant RH. Reversible asynergy. Histopathologic and electrocardiographic correlations in patients with coronary artery disease. Circulation 1976; 53: 792–796.

    Article  PubMed  CAS  Google Scholar 

  5. Chatterjee K, Swann HJ, Parmley WW, Sustaita H, Marcus HS, Matloff J. Influence of direct myocardial revascularization on left ventricular asynergy and function in patients with coronary heart disease and with and without previous myocardial infarction. Circulation 1973; 47: 276–286.

    Article  PubMed  CAS  Google Scholar 

  6. Braunwald E, Kloner RA. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 1982; 66: 1146–1149.

    Article  PubMed  CAS  Google Scholar 

  7. Iskandrian AS, Heo J, Helfant RH, Segal BL. Chronic myocardial ischemia and left ventricular function. Ann Intern Med 1987; 107: 925–927.

    PubMed  CAS  Google Scholar 

  8. Peshock RM. Assessing myocardial viability with magnetic resonance imaging. Am J Card Imaging 1992; 6: 237–243.

    PubMed  CAS  Google Scholar 

  9. Sechtem U, Voth E, Baer F, Schneider C, Theissen P, Schicha H. Assessment of residual viability in patients with myocardial infarction using magnetic resonance techniques. Int J Card Imaging 1993; 9 (Suppl 1): 31–40.

    Article  PubMed  Google Scholar 

  10. Williams ES, Kaplan JI, Thatcher F, Zimmerman G, Knoebel SB. Prolongation of proton spin lattice relaxation times in regionally ischemic tissue from dog hearts. J Nucl Med 1980; 21: 449–453.

    PubMed  CAS  Google Scholar 

  11. Higgins CB, Herfkins R, Lipton MJ, Sievers R, Sheldon P, Kaufman L et al. Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: Alterations in magnetic relaxation times. Am J Cardiol 1983; 52: 184–188.

    Article  PubMed  CAS  Google Scholar 

  12. Pflugfelder PW, Wisenberg G, Prato FS, Carroll SE. Serial imaging of canine myocardial infarction by in vivo nuclear magnetic resonance. J Am Coll Cardiol 1986; 7: 843–849.

    Article  PubMed  CAS  Google Scholar 

  13. Ratner AV, Okada RD, Newell JB, Pohost GM. The relationship between proton nuclear magnetic resonance relaxation parameters and myocardial perfusion with acute coronary arterial occlusion and reperfusion. Circulation 1985; 71: 823–828.

    Article  PubMed  CAS  Google Scholar 

  14. Johnston DL, Brady TJ, Ratner AV, Rosen BR, Newell JB, Pohost GM et al. Assessment of myocardial ischemia with proton magnetic resonance: Effects of a three hour coronary occlusion with and without reperfusion. Circulation 1985; 71: 595–601.

    Article  PubMed  CAS  Google Scholar 

  15. Slutsky RA, Brown JJ, Peck WW, Stritch G, Andre MP. Effects of transient coronary ischemia and reperfusion on myocardial edema formation and in vitro magnetic relaxation times [retracted in: J Am Coll Cardiol 1987; 9: 973]. J Am Coll Cardiol 1984; 3: 1454–1460.

    Article  PubMed  CAS  Google Scholar 

  16. Aisen AM, Buda AJ, Zotz RJ, Buckwalter KA. Visualization of myocardial infarction and subsequent coronary reperfusion with MRI using a dog model. Magn Reson Imaging 1987; 5: 399–404.

    Article  PubMed  CAS  Google Scholar 

  17. Johnston DL, Liu P, Rosen BR, Levine RA, Beaulieu PA, Brady TJ et al In vivo detection of reperfused myocardium by nuclear magnetic resonance imaging. J Am Coll Cardiol 1987; 9: 127–135.

    Article  PubMed  CAS  Google Scholar 

  18. Miller DD, Johnston DL, Dragotakes D, Newell JB, Aretz T, Kantor HL et al. Effect of hyperosmotic mannitol on magnetic resonance relaxation parameters in reperfused canine myocardial infarction. Magn Reson Imaging 1989; 7: 79–88.

    Article  PubMed  CAS  Google Scholar 

  19. Tscholakoff D, Higgins CB, Sechtem U, Caputo G, Derugin N. MRI of reperfused myocardial infarct in dogs. AJR Am J Roentgenol 1986; 146: 925–930.

    PubMed  CAS  Google Scholar 

  20. Buda AJ, Aisen AM, Juni JE, Gallagher KP, Zotz RJ. Detection and sizing of myocardial ischemia and infarction by nuclear magnetic resonance imaging in the canine heart. Am Heart J 1985; 110: 1284–1290.

    Article  PubMed  CAS  Google Scholar 

  21. Rokey R, Verani MS, Bolli R, Kuo LC, Ford JJ, Wendt RE et al. Myocardial infarct size quantification by MR imaging early after coronary artery occlusion in dogs. Radiology 1986; 158: 771–774.

    PubMed  CAS  Google Scholar 

  22. Bouchard A, Reeves RC, Cranney G, Bishop SP, Pohost GM, Assessment of myocardial infarct size by means of T2-weighted 1H nuclear magnetic resonance imaging. Am Heart J 1989; 117: 281–289.

    Article  PubMed  CAS  Google Scholar 

  23. Wisenberg G, Prato FS, Carroll SE, Turner KL, Marshall T. Serial nuclear magnetic resonance imaging of acute myocardial infarction with and without reperfusion. Am Heart J 1988; 115: 510–518.

    Article  PubMed  CAS  Google Scholar 

  24. Caputo GR, Sechtem U, Tscholakoff D, Higgins CB. Measurement of myocardial infarct size at early and late time intervals using MR imaging: An experimental study in dogs. AJR Am J Roentgenol 1987; 149: 237–243.

    PubMed  CAS  Google Scholar 

  25. Johnston DL, Homma S, Liu P, Weilbaecher DG, Rokey R, Brady TJ et al. Serial changes in nuclear magnetic resonance relaxation times after myocardial infarction in the rabbit: Relationship to water content, severity of ischemia, and histopathology over a six-month period. Magn Reson Med 1988; 8: 363–379.

    Article  PubMed  CAS  Google Scholar 

  26. McNamara MT, Higgins CB, Schechtmann N, Botvinick E, Lipton MJ, Chatterjee K et al. Detection and characterization of acute myocardial infarction in man with the use of gated magnetic resonance. Circulation 1985; 71: 717–724.

    Article  PubMed  CAS  Google Scholar 

  27. Johnston DL, Thompson RC, Liu P, Dinsmore RE, Wismer GL, Saini S et al. Magnetic resonance imaging during acute myocardial infarction. Am J Cardiol 1986; 57: 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  28. Fisher MR, McNamara MT, Higgins CB. Acute myocardial infarction: MR evaluation in 29 patients. AJR Am J Roentgenol 1987; 148: 247–251.

    PubMed  CAS  Google Scholar 

  29. Ahmad M, Johnson RF Jr, Fawcett HD, Schreiber MH. Magnetic resonance imaging in patients with unstable angina: Comparison with acute myocardial infarction and normals. Magn Reson Imaging 1988; 6: 527–534.

    Article  PubMed  CAS  Google Scholar 

  30. Been M, Smith MA, Ridgeway JP, Brydon JW, Douglas RH, Kean DM, Best JJ et al. Characterisation of acute myocardial infarction by gated magnetic resonance imaging. Lancet 1985; 2: 348–350.

    Article  PubMed  CAS  Google Scholar 

  31. Been M, Smith MA, Ridgway JP, Douglas RH, De Bono DP, Best JJ et al. Serial changes in the T1 magnetic relaxation parameter after myocardial infarction in man. Br Heart J 1988; 59: 1–8.

    Article  PubMed  CAS  Google Scholar 

  32. Postema S, De Roos A, Doornbos J, Krauss XH, Blokland JAK. Recent myocardial infarction: Detection and localization by magnetic resonance imaging and thallium scintigraphy. J Med Imaging 1989; 3: 68–74.

    Google Scholar 

  33. Krauss XH, van der Wall EE, Doornbos J, Blokland JAK, Postema S, De Roos A et al. The value of magnetic resonance imaging in patients with a recent myocardial infarction: Comparison with planar thallium-201 scintigraphy. Cardiovasc Intervent Radiol 1989; 12: 119–124.

    Article  PubMed  CAS  Google Scholar 

  34. Krauss XH, van der Wall EE, Van der Laarse A, Doornbos J, De Roos A, Matheijssen NAA et al. Follow-up of regional myocardial T2 relaxation times in patients with myocardial infarction evaluated with magnetic resonance imaging. Eur J Radiol 1990; 11: 110–119.

    Article  PubMed  CAS  Google Scholar 

  35. Krauss XH, van der Wall EE, Van der Laarse A, Doornbos J, Matheijssen NAA, De Roos A et al. Magnetic resonance imaging of myocardial infarction: Correlation with enzymatic, angiographic, and radionuclide findings. Am Heart J 1991; 122: 1274–1283.

    Article  PubMed  CAS  Google Scholar 

  36. Filipchuk NG, Peshock RM, Malloy CR, Corbett JR, Rehr RB, Buja LM et al. Detection and localization of recent myocardial infarction by magnetic resonance imaging. Am J Cardiol 1986; 58: 214–219.

    Article  PubMed  CAS  Google Scholar 

  37. White RD, Cassidy MM, Cheitlin MD, Emilson B, Ports TA, Lim AD et al. Segmental evaluation of left ventricular wall motion after myocardial infarction: Magnetic resonance imaging versus echocardiography. Am Heart J 1988; 115: 166–175.

    Article  PubMed  CAS  Google Scholar 

  38. White RD, Holt WW, Cheitlin MD, Cassidy MM, Ports TA, Lim AD et al. Estimation of the functional and anatomic extent of myocardial infarction using magnetic resonance imaging. Am Heart J 1988; 115: 740–748.

    Article  PubMed  CAS  Google Scholar 

  39. Wisenberg G, Finnie KJ, Jablonsky G, Kostuk WJ, Marshall T. Nuclear magnetic resonance and radionuclide angiographic assessment of acute myocardial infarction in a randomized trial of intravenous streptokinase. Am J Cardiol 1988; 62: 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  40. Johns JA, Leavitt MB, Newell JB, Yasuda T, Leinbach RC, Gold HK et al. Quantitation of acute myocardial infarct size by nuclear magnetic resonance imaging. J Am Coll Cardiol 1990; 15: 143–149.

    Article  PubMed  CAS  Google Scholar 

  41. Turnbull LW, Ridgway JP, Nicoll JJ, Bell D, Best JJ, Muit AL. Estimating the size of myocardial infarction by magnetic resonance imaging. Br Heart J 1991; 66: 359–363.

    Article  PubMed  CAS  Google Scholar 

  42. Brown JJ, Higgins CB. Myocardial paramagnetic contrast agents for MR imaging. AJR Am J Roentgenol 1988; 151: 865–871.

    PubMed  CAS  Google Scholar 

  43. Tweedle MF, Eaton SM, Eckelman WC, Gaughan GT, Hagan JJ, Wedeking PW et al. Comparative chemical structure and pharmacokinetics of MRI contrast agents. Invest Radiol 1988; 23 (Suppl 1): S236–S239.

    Article  PubMed  CAS  Google Scholar 

  44. Weinmann HJ, Brasch RC, Press WR, Wesbey GE. Characteristics of gadolinium-DTPA complex: A potential NMR contrast agent. AJR Am J Roentgenol 1984; 142: 619–624.

    PubMed  CAS  Google Scholar 

  45. Brasch RC, Weinmann HJ, Wesbey GE. Contrast-enhanced NMR Imaging: Animal studies using gadolinium-DTPA complex. AJR Am J Roentgenol 1984; 142: 625–630.

    PubMed  CAS  Google Scholar 

  46. Elster AD, Jackels SC, Allen NS, Marrache RC. Dyke Award. Europeum-DTPA: A gadolinium analogue traceable by fluorescence microscopy. AJNR Am J Neuroradiol 1989; 10: 1137–1144.

    PubMed  CAS  Google Scholar 

  47. Koenig SH, Spiller M, Brown RD 3d, Wolf GL. Relaxation of water protons in the intra-and extracellular regions of blood containing Gd(DTPA). Magn Reson Med 1986; 3: 791–795.

    Article  PubMed  CAS  Google Scholar 

  48. Meyer D, Schaefer M, Bonnemain B. Gd-DOTA, a potential MRI contrast agent. Current status of physicochemical knowledge. Invest Radiol 1988; 23 (Suppl 1): S232–S235.

    Article  PubMed  CAS  Google Scholar 

  49. Schouman-Claeys E, Frija G, Revel D, Doucet D, Donadieu AM. Canine acute myocardial infarction. In vivo detection by MRI with gradient echo technique and contribution of Gd-DOTA. Invest Radiol 1988; 23 (Suppl 1): S254–S257.

    Article  PubMed  Google Scholar 

  50. Ogan MD, Schmiedl U, Moseley ME, Grodd W, Paajanen H, Brasch RC. Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: Preparation and characterization. Invest Radiol 1987; 22: 665–671.

    Article  PubMed  CAS  Google Scholar 

  51. Schmiedl U, Sievers RE, Brasch RC, Wolfe CL, Chew WM, Ogan MD et al. Acute myocardial ischemia and reperfusion: MR imaging with albumin-Gd-DTPA. Radiology 1989; 170: 351–356.

    PubMed  CAS  Google Scholar 

  52. Schmiedl U, Ogan M, Paajanen H, Marotti M, Crooks LE, Brito AC et al. Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: Biodistribution and imaging studies. Radiology 1987; 162: 205–210.

    PubMed  CAS  Google Scholar 

  53. Schmiedl U, Ogan MD, Moseley ME, Brasch RC. Comparison of the contrast-enhancing properties of albumin-(Gd-DTPA) and Gd-DTPA at 2.0 T: An experimental study in rats. AJR Am J Roentgenol 1986; 147: 1263–1270.

    PubMed  CAS  Google Scholar 

  54. Matheijssen NA, De Roos A, van der Wall EE, Doornbos J, Van Dijkman PR, Bruschke AV et al. Acute myocardial infarction: Comparison of T2-weighted and Tl-weighted gadolinium-DTPA enhanced MR imaging. Magn Reson Med 1991; 17: 460–469.

    Article  PubMed  CAS  Google Scholar 

  55. Wesbey GE, Higgins CB, McNamara MT, Engelstad BL, Lipton MJ, Sievers R et al. Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium. Radiology 1984; 153: 165–169.

    PubMed  CAS  Google Scholar 

  56. McNamara MT, Higgins CB, Ehman RL, Revel D, Sievers R, Brasch RC. Acute myocardial ischemia: Magnetic resonance contrast enhancement with gadolinium-DTPA. Radiology 1984; 153: 157–163.

    PubMed  CAS  Google Scholar 

  57. Runge VM, Clanton JA, Wehr CJ, Partain CL, James AE Jr. Gated magnetic resonance imaging of acute myocardial ischemia in dogs: Application of multi-echo techniques and contrast enhancement with GD DTPA. Magn Reson Imaging 1985; 3: 255–266.

    Article  PubMed  CAS  Google Scholar 

  58. Johnston DL, Liu P, Lauffer RB, Newell JB, Wedeen VJ, Rosen BR et al. Use of Gadolinium-DTPA as a myocardial perfusion agent: Potential applications and limitations for magnetic resonance imaging. J Nucl Med 1987; 28: 871–877.

    PubMed  CAS  Google Scholar 

  59. Nishimura T, Yamada Y, Kozuka T, Nakatani T, Noda H, Takano H. Value and limitation of gadolinium-DTPA contrast enhancement in the early detection of acute canine myocardial infarction. Am J Physiol Imaging 1987; 2: 181–185.

    PubMed  CAS  Google Scholar 

  60. Miller DD, Holmvang G, Gill JB, Dragotakes D, Kantor HL, Okada RD et al. MRI detection of myocardial perfusion changes by gadolinium-DTPA infusion during dipyridamole hyperemia. Magn Reson Med 1989; 10: 246–255.

    Article  PubMed  CAS  Google Scholar 

  61. Tscholakoff D, Higgins CB, Sechtem U, McNamara MT. Occlusive and reperfused myocardial infarcts: Effect of Gd-DTPA on ECG-gated MR imaging. Radiology 1986; 160: 515–519.

    PubMed  CAS  Google Scholar 

  62. McNamara MT, Tscholakoff D, Revel D, Soulen R, Schechtmann N, Botvinick E et al. Differentiation of reversible and irreversible myocardial injury by MR imaging with and without gadolinium-DTPA. Radiology 1986; 158: 765–769.

    PubMed  CAS  Google Scholar 

  63. Peshock RM, Malloy CR, Buja LM, Nunnally RL, Parkey RW, Willerson JT. Magnetic resonance imaging of acute myocardial infarction: Gadolinium diethylenetriamine pentaacetic acid as a marker of reperfusion. Circulation 1986; 74: 1434–1440.

    Article  PubMed  CAS  Google Scholar 

  64. Wolfe CL, Moseley ME, Wikstrom MG, Sievers RE, Wendland MF, Dupon JW et al. Assessment of myocardial salvage after ischemia and reperfusion using magnetic resonance imaging and spectroscopy. Circulation 1989; 80: 969–982.

    Article  PubMed  CAS  Google Scholar 

  65. Schaefer S, Malloy CR, Katz J, Parkey RW, Buja LM, Willerson JT et al. Gadolinium-DTPA-enhanced nuclear magnetic resonance imaging of reperfused myocardium: Identification of the myocardial bed at risk. J Am Coll Cardiol 1988; 12: 1064–1072.

    Article  PubMed  CAS  Google Scholar 

  66. Holman ER, Van Dijkman PR, van der Wall EE, Matheijssen NA, Van der Meer P, Van Echteld CJ et al. Assessment of myocardial perfusion during ischemia and reperfusion in isolated rat hearts using gadopentetic acid-enhanced magnetic resonance imaging. Coronary Artery Dis 1991; 2: 789–797.

    Google Scholar 

  67. Nishimura T, Yamada Y, Hayashi M, Kozuka T, Nakatani T, Noda H et al. Determination of infarct size of acute myocardial infarction in dogs by magnetic resonance imaging and gadolinium-DTPA: Comparison with indium-111 antimyosin imaging. Am J Physiol Imaging 1989; 4: 83–88.

    PubMed  CAS  Google Scholar 

  68. Van Dijkman PR, Hold KM, Van der Laarse A, Holman ER, Özdemir HI, Van der Nat TH et al. Sequential analysis of infarcted and normal myocardium in piglets using in vivo gadolinium-enhanced MR images. Magn Reson Imaging 1993; 11: 207–218.

    Article  PubMed  Google Scholar 

  69. Eichstaedt HW, Felix R, Dougherty FC, Langer M, Rutsch W, Schmutzler H. Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clin Cardiol 1986; 9: 527–535.

    Article  PubMed  CAS  Google Scholar 

  70. Nishimura T, Kobayashi H, Ohara Y, Yamada N, Haze K, Takamiya M et al. Serial assessment of myocardial infarction by using gated MR Imaging and Gd-DTPA. AJR Am J Roentgenol 1989; 153: 715–720.

    PubMed  CAS  Google Scholar 

  71. De Roos A, Doornbos J, van der Wall EE, Van Voorthuisen AE. MR imaging of acute myocardial infarction: Value of Gd-DTPA. AJR Am J Roentgenol 1988; 150: 531–534.

    PubMed  Google Scholar 

  72. van der Wall EE, Doornbos J, Postema S, Van Dijkman PRM, Manger Cats V, De Roos A et al. Improved detection of myocardial infarction by Gadolinium-enhanced magnetic resonance imaging [abstract]. Eur Heart J 1988; 9 (Abstract Suppl I): 340.

    Google Scholar 

  73. Van Dijkman PR, Doornbos J, De Roos A, Van der Laarse A, Postema S, Matheijssen NA et al. Improved detection of acute myocardial infarction by magnetic resonance imaging using Gadolinium-DTPA. Int J Card Imaging 1989; 5: 1–8.

    Article  PubMed  Google Scholar 

  74. Van Dijkman PR, van der Wall EE, Doornbos J, Van der Laarse A, Postema S, De Roos A et al. Improved assessment of acute myocardial infarction by magnetic resonance imaging and Gadolinium-DTPA [abstract]. J Am Coll Cardiol 1989; 13 (Suppl A): 49A.

    Google Scholar 

  75. Van Dijkman PR, van der Wall EE, De Roos A, Matheijssen NA, Van Rossum AC, Doornbos J et al. Acute, subacute, and chronic myocardial infarction: Quantitative analysis of gadolinium-enhanced MR images. Radiology 1991; 180: 147–151.

    PubMed  Google Scholar 

  76. Holman ER, van Jonbergen HP, van Dijkman PR, van der Laarse A, de Roos A, van der Wall EE. Comparison of magnetic resonance imaging studies with enzymatic indexes of myocardial necrosis for quantification of myocardial infarct size. Am J Cardiol 1993; 71: 1036–1040.

    Article  PubMed  CAS  Google Scholar 

  77. van der Wall EE, Van Dijkman PRM, De Roos A, Doornbos J, Van der Laarse A, Manger Cats V et al. Diagnostic significance of gadolinium-DTPA (diethylenetriamine penta-acetic acid) enhanced magnetic resonance imaging in thrombolytic treatment for acute myocardial infarction: Its potential in assessing reperfusion. Br Heart J 1990; 63: 12–17.

    Article  PubMed  Google Scholar 

  78. De Roos A, Van Rossum A, van der Wall E, Postema S, Doornbos J, Matheijssen N et al. Reperfused and nonreperfused myocardial infarction: Diagnostic potential of Gd-DTPA-enhanced MR imaging, Radiology 1989; 172: 717–720.

    PubMed  Google Scholar 

  79. De Roos A, Matheijssen NA, Doornbos J, Van Dijkman PR, Van Voorthuisen AE, van der Wall EE. Myocardial infarct size after reperfusion therapy: Assessment with Gd-DTPA-enhanced MR imaging. Radiology 1990; 176: 517–521.

    PubMed  Google Scholar 

  80. Haase A. Snapshot FLASH MRI. Application to T1, T2, and chemical-shift imaging. Magn Reson Med 1990; 13: 77–89.

    Article  PubMed  CAS  Google Scholar 

  81. Henrich D, Haase A, Matthaei D. 3D-snapshot flash NMR imaging of the human heart. Magn Reson Imaging 1990; 8: 377–379.

    Article  PubMed  CAS  Google Scholar 

  82. Frahm J, Merboldt KD, Bruhn H, Gyngell ML, Hanicke W, Chien D. 0.3-second FLASH MRI of the human heart. Magn Reson Med 1990; 13: 150–157.

    Article  PubMed  CAS  Google Scholar 

  83. Atkinson DJ, Burstein D, Edelman RR. First-pass cardiac perfusion: Evaluation with ultrafast MR imaging. Radiology 1990; 174: 757–762.

    PubMed  CAS  Google Scholar 

  84. Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR. First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991; 18: 959–965.

    Article  PubMed  CAS  Google Scholar 

  85. Van Rugge FP, Boreel JJ, van der Wall EE, van Dijkman PRM, van der Laarse A, Doornbos J et al. Cardiac first-pass and myocardial perfusion in normal subjects assessed by sub-second Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 1991; 15: 959–965.

    Article  PubMed  Google Scholar 

  86. Van Rugge FP, van der Wall EE, van Dijkman PR, Louwerenburg HW, de Roos A, Bruschke AV. Usefulness of ultrafast magnetic resonance imaging in healed myocardial infarction. Am J Cardiol 1992; 70: 1233–1237.

    Article  PubMed  Google Scholar 

  87. Buser PT, Auffermann W, Holt WW, Wagner S, Kircher B, Wolfe C et al. Am J Cardiol 1992; 70: 1233–1237.

    Article  Google Scholar 

  88. Buser PT, Auffermann W, Holt WW, Wagner S, Kircher B, Wolfe C et al. Noninvasive evaluation of global left ventricular function with use of cine nuclear magnetic resonance. J Am Coll Cardiol 1989; 13: 1294–1300.

    Article  PubMed  CAS  Google Scholar 

  89. Pattynama PM, Doornbos J, Hermans J, van der Wall EE, De Roos A. Magnetic resonance evaluation of regional left ventricular function. Effect of through-plane motion. Invest Radiol 1992; 27: 681–685.

    Article  PubMed  CAS  Google Scholar 

  90. Pattynama PM, Lamb HJ, Van der Velde EA, van der Wall EE, De Roos A. Left ventricular measurements with cine and spin-echo MR imaging: A study of reproducibility with variance component analysis. Radiology 1993; 187: 261–268.

    PubMed  CAS  Google Scholar 

  91. Sechtem U, Sommerhoff BA, Markiewicz W, White RD, Cheitlin MD, Higgins CB. Regional left ventricular wall thickening by magnetic resonance imaging: Evaluation of normal persons and patients with global and regional dysfunction. Am J Cardiol 1987; 59: 145–151.

    Article  PubMed  CAS  Google Scholar 

  92. Pflugfelder PW, Sechtem UP, White RD, Higgins CB. Quantification of regional myocardial function by rapid cine MR imaging. AJR Am J Roentgenol 1988; 150: 523–529.

    PubMed  CAS  Google Scholar 

  93. Matheijssen NA, De Roos A, Doornbos J, Reiber JH, Waldman GJ, Van der Wall EE. Left ventricular wall motion analysis in patients with acute myocardial infarction using magnetic resonance imaging. Magn Reson Imaging 1993; 11: 485–492.

    Article  PubMed  CAS  Google Scholar 

  94. Pettigrew RI. Dynamic cardiac MR imaging. Techniques and applications. Radiol Clin North Am 1989; 27: 1183–1203.

    PubMed  CAS  Google Scholar 

  95. Baer FM, Smolarz K, Jungehulsing M, Beckwilm J, Theissen P, Sechtem U et al. Chronic myocardial infarction: Assessment of morphology, function, and perfusion by gradient-echo magnetic resonance imaging and 99mTc-methoxyisobutyl-isonitrile SPECT. Am Heart J 1992; 123: 636–645.

    Article  PubMed  CAS  Google Scholar 

  96. Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Marin-Neto JA, Arrighi JA et al. Metabolic evidence of viable myocardium in regions with reduced wall thickness and absent wall thickening in patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 1992; 20: 161–168.

    Article  PubMed  CAS  Google Scholar 

  97. Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Frank JA, Bonow RO. Regional left ventricular wall thickening. Relation to regional uptake of 18-fluorodeoxyglucose and 201-Tl in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 1992; 86: 1125–1137.

    Article  PubMed  CAS  Google Scholar 

  98. Pennell DJ, Underwood SR, Manzara CC, Swanton RH, Walker JM, Ell PJ et al. Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 1992; 70: 34–40.

    Article  PubMed  CAS  Google Scholar 

  99. Van Rugge FP, van der Wall EE, Bruschke AV. New developments in pharmacologic stress imaging. Am Heart J 1992; 124: 468–485.

    Article  PubMed  Google Scholar 

  100. van Rugge FP, Holman ER, van der Wall EE, de Roos A, van der Laarse A, Bruschke AV. Quantitation of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress in normal human subjects. Eur Heart J 1993; 14: 456–463.

    Article  PubMed  Google Scholar 

  101. Van Rugge FP, van der Wall EE, de Roos A, Bruschke AV. Dobutamine stress magnetic resonance imaging for detection of coronary artery disease. J Am Coll Cardiol 1993; 22: 431–439.

    Article  PubMed  Google Scholar 

  102. Van Rugge FP, van der Wall EE, Spanjersberg SJ, de Roos A, Matheijssen NA, Zwinderman AH et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation. (July issue, 1994).

    Google Scholar 

  103. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: Tagging with MR imaging-a method for noninvasive assessment of myocardial motion. Radiology 1988; 169: 59–63.

    PubMed  CAS  Google Scholar 

  104. Bolster BD Jr, McVeigh ER, Zerhouni EA. Myocardial tagging in polar coordinates with the use of triped tags. Radiology 1990; 177: 769–772.

    PubMed  Google Scholar 

  105. Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology 1989; 171: 841–845.

    PubMed  CAS  Google Scholar 

  106. Mosher TJ, Smith MB. A DANTE tagging sequence for the evaluation of translational sample motion. Magn Reson Med 1990; 15: 334–339.

    Article  PubMed  CAS  Google Scholar 

  107. Buchalter MB, Weiss JL, Rogers WJ, Zerhouni EA, Weisfeldt ML, Beyar R et al. Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 1990; 81: 1236–1244.

    Article  PubMed  CAS  Google Scholar 

  108. Schaefer S. Clinical nuclear magnetic resonance spectroscopy: Insight into metabolism. Am J Cardiol 1990; 66: 45F–50F.

    Article  PubMed  CAS  Google Scholar 

  109. de Roos A, van der Wall EE. Magnetic resonance imaging and spectroscopy of the heart. Curr Opin Cardiol 1991; 6: 946–952.

    Article  PubMed  Google Scholar 

  110. de Roos A, Doornbos J, Luyten PR, Oosterwaal LJ, van der Wall EE, den Hollander JA. Cardiac metabolism in patients with dilated and hypertrophic cardiomyopathy: Assessment with proton decoupled P-31 MR spectroscopy. J Magn Reson Imaging 1992; 2: 711–719.

    Article  PubMed  Google Scholar 

  111. Rehr RB, Tatum JL, Hirsch JI, Quint R, Clarke G. Reperfused-viable and reperfused-infarcted myocardium: Differentiation with in vivo P-31 MR spectroscopy. Radiology 1989; 172: 53–58.

    PubMed  CAS  Google Scholar 

  112. Jacobus WE, Taylor GJ 4th, Hollis DP, Nunnally RL. Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature 1977; 265: 756–758.

    Article  PubMed  CAS  Google Scholar 

  113. Nunnally RL, Bottomley PA. Assessment of pharmacological treatment of myocardial infarction by phosphorus-31 NMR with surface coils. Science 1981; 211: 177–180.

    Article  PubMed  CAS  Google Scholar 

  114. Flaherty JT, Weisfeldt ML, Bulkley BH, Gardner TJ, Gott VL, Jacobus WE. Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance. Circulation 1982; 65: 561–570.

    Article  PubMed  CAS  Google Scholar 

  115. Rehr RB, Tatum J, Hirsch J, Wetstein L, Clarke G. Effective separation of normal, acutely ischemic, and reperfused myocardium with P-31 MR spectroscopy. Radiology 1988; 168: 81–89.

    PubMed  CAS  Google Scholar 

  116. Bailey I A, Seymour AL. Effects of reperfusion on the P-31 NMR spectrum of ischemic rat hearts. Biochem Soc Trans 1981; 9: 234–236.

    CAS  Google Scholar 

  117. Bailey IA, Seymour AL, Radda GK. A 31P NMR study of the effects of reflow on the ischaemic rat heart. Biochim Biophys Acta 1981; 637: 1–7.

    Article  PubMed  CAS  Google Scholar 

  118. Ichihara K, Abiko Y. Rebound recovery of myocardial creatine phosphate with reperfusion after ischemia. Am Heart J 1984; 108: 1594–1597.

    Article  PubMed  CAS  Google Scholar 

  119. Wroblewski LC, Aisen AM, Swanson SD, Buda AJ. Evaluation of myocardial viability following ischemic and reperfusion injury using phophorus 31 nuclear magnetic resonance spectroscopy in vivo. Am Heart J 1990; 120: 31–39.

    Article  PubMed  CAS  Google Scholar 

  120. Rehr RB, Fuhs BE, Lee F, Tatum JL, Hirsch JI, Quint R. Differentiation of reperfused-viable (stunned) from reperfused-infarcted myocardium at 1 to 3 days postreperfusion by in vivo phosphorus-31 nuclear magnetic resonance spectroscopy. Am Heart J 1991; 122: 1571–1582.

    Article  PubMed  CAS  Google Scholar 

  121. Bottomley PA, Herfkens RJ, Smith LS, Bahore TM. Altered phosphate metabolism in myocardial infarction P-31 MR spectroscopy. Radiology 1987; 165: 703–707.

    PubMed  CAS  Google Scholar 

  122. Blackledge MJ, Rajagopalan B, Oberhaensli RD, Bolas NM, Styles P, Radda G. Quantitative studies of human cardiac metabolism by 3IP rotating-frame NMR. Proc Natl Acad Sci USA 1987; 84: 4283–4287.

    Article  PubMed  CAS  Google Scholar 

  123. Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G. Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 1990; 323: 1593–1600.

    Article  PubMed  CAS  Google Scholar 

  124. Bottomley PA, Weiss RG, Hardy CJ, Baumgartner WA. Myocardial high-energy phosphate metabolism and allograft rejection in patients with heart transplants. Radiology 1991; 181: 67–75.

    PubMed  CAS  Google Scholar 

  125. Bottomley PA, Hardy CJ, Roemer PB. Phosphate metabolite imaging and concentration measurements in human heart by nuclear magnetic resonance. Magn Reson Med 1990; 14: 425–434.

    Article  PubMed  CAS  Google Scholar 

  126. de Roos A, Luyten PR, Doornbos J, van der Laarse A, van der Wall EE. Clinical phosphorus-31 magnetic resonance spectroscopy in cardiomyopathy. In Pohost GM (ed): Cardiovascular Applications of Magnetic Resonance. Mount Kisco, NY: Futura 1993; 363–370.

    Google Scholar 

  127. Schaefer S, Gober JR, Schwartz GG, Twieg DB, Weiner MW, Massie B. In vivo phosphorus-31 spectroscopic imaging in patients with global myocardial disease. Am J Cardiol 1990; 65: 1154–1161.

    Article  PubMed  CAS  Google Scholar 

  128. Schaefer S, Gober J, Valenza M, Karczmar GS, Matson GB, Camacho SA et al. Nuclear magnetic resonance imaging-guided phosphorus-31 spectroscopy of the human heart. J Am Coll Cardiol 1988; 12: 1449–1455.

    Article  PubMed  CAS  Google Scholar 

  129. Bottomley PA. Noninvasive study of high-energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy. Science 1985; 229: 769–772.

    Article  PubMed  CAS  Google Scholar 

  130. Higgins CB. Success of acute thrombolytic therapy and acute myocardial infarction: What does it demand from cardiac imaging in the 1990s? Radiology 1989; 172: 17–19.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Der Wall, E.E., Vliegen, H.W. (1994). Magnetic resonance techniques for the assessment of myocardial viability. In: Iskandrian, A.S., Van Der Wall, E.E. (eds) Myocardial viability. Developments in Cardiovascular Medicine, vol 154. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1170-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1170-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4510-0

  • Online ISBN: 978-94-011-1170-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics