Skip to main content

Abstract

Maize transposons were the first genetic elements in plants known to be subject to reversible inactivation. Early in the study of the Suppressor-mutator trans-posable element, McClintock identified cultures in which the “suppressor” and the “mutator” components of the element had a tendency to disappear and reappear simultaneously (McClintock 1957, McClintock 1958). In 1958 she wrote:

The Spm element originally present in the a m-12 cultures… did not always effect suppression of gene action in all parts of a plant or kernel. Mutations, however, occurred only in those parts of the plant or kernel in which gene expression was suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ac :

Activator

bz :

bronze

CaMV:

cauliflower mosaic virus

Ds :

Dissociation

DCR:

downstream control region

dSpm :

transposition”defective Spm

En :

Enhancer

GUS:

β-glucuronidase

I :

Inhibitor

Mu :

Mutator

ORF:

open reading frame

sh :

shrunken

Spm :

Suppressor-mutator

Spm-c :

cycling Spm

Spm-w :

weak Spm

TIR:

terminal inverted repeat

UCR:

upstream control region

wx :

waxy

References

  • Alleman M & Freeling M (1986) The Mu transposable elements of maize: evidence for transposition and copy number regulation during development. Genetics 112: 107–119.

    PubMed  CAS  Google Scholar 

  • Baker B, Schell J, Lörz H & Fedoroff NV (1986) Transposition of the maize controlling element Activator in tobacco. Proc Natl Acad Sci USA 83: 4844–4848.

    Article  PubMed  CAS  Google Scholar 

  • Baker B, Coupland G, Fedoroff N, Starlinger P & Schell J (1987) Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J 6: 1547–1554.

    PubMed  CAS  Google Scholar 

  • Banks JA & Fedoroff N (1989) Patterns of developmental and heritable change in methylation of the Suppressor-mutator transposable element. Develop Genet 10: 425–437.

    Article  CAS  Google Scholar 

  • Banks JA, Masson P, & Fedoroff N (1988) Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev 2:1364–1380.

    Article  PubMed  CAS  Google Scholar 

  • Barkan A & Martienssen RA (1991) Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mul. Proc Natl Acad Sci USA 88: 3502–3506.

    Article  PubMed  CAS  Google Scholar 

  • Barker RF, Thompson DV, Talbot DR, Swanson J & Bennetzen JL (1984) Nucleotide sequence of the maize transposable element Mul. Nucleic Acids Res 12: 5955–5967.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (1987) Covalent DNA modification and the regulation of Mutator element transposition in maize. Mol Gen Genet 208: 45–51.

    Article  CAS  Google Scholar 

  • Bennetzen JL, Swanson J, Taylor WC & Freeling M (1984) DNA insertion in the first intron of maize adh1 affects message levels: cloning of progenitor and mutant adh1 alleles. Proc Natl Acad Sci USA 81: 4125–4128.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Fracasso RP, Morris DW, Robertson DS & Skogen-Hagenson MJ (1987) Concomitant regulation of Mul transposition and Mutator activity in maize. Mol Gen Genet 208: 57–62.

    Article  CAS  Google Scholar 

  • Bennetzen JL, Brown WE & Springer PS (1988) The state of DNA modification within and flanking maize transposable elements. In: Nelson O (ed) Plant Transposable Elements (pp 237–250). Plenum Publishing Corporation, New York.

    Chapter  Google Scholar 

  • Berg D & Howe M (1989) Mobile DNA. American Society for Microbiology, Washington.

    Google Scholar 

  • Bianchi A, Salamini F & Restaino F (1969) Concomitant occurrence of different controlling elements. Maize Genet Coop News Lett 43: 91.

    Google Scholar 

  • Brettel RIS & Dennis ES (1991) Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation pattern. Mol Gen Genet 229: 365–372.

    Article  Google Scholar 

  • Brown J & Sundaresan V (1992) Genetic study of the loss and restoration of Mutator transposon activity in maize: evidence against dominant negative regulator associated with loss of activity. Genetics 130: 889–898.

    PubMed  CAS  Google Scholar 

  • Chandler VL & Hardeman KJ (1992) The Mu elements of Zea mays. Adv in Genetics 30: 77–122.

    Article  CAS  Google Scholar 

  • Chandler V & Walbot V (1986) DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci USA 83: 1767–1771.

    Article  PubMed  CAS  Google Scholar 

  • Chandler V, Rivin C & Walbot V (1986) Stable non-Mutator stocks of maize have sequences homologous to the Mul transposable element. Genetics 114: 1007–1021.

    PubMed  CAS  Google Scholar 

  • Chandler VL, Talbert LE & Raymond F (1988) Sequence, genomic distribution and DNA modification of a Mul element from non-Mutator maize stocks. Genetics 119: 951–958.

    PubMed  CAS  Google Scholar 

  • Chomet PS, Wessler S & Dellaporta SL (1987) Inactivation of the maize transposable element Activator (Ac) is associated with DNA modification. EMBO J 6: 295- 102.

    PubMed  CAS  Google Scholar 

  • Chomet P, Lisch D, Hardeman KJ, Chandler VL & Freeling M (1991) Identification of a regulatory transposon that controls the Mutator transposable element system in maize. Genetics 129: 261–270.

    PubMed  CAS  Google Scholar 

  • Cone CC, Schmidt RJ, Burr B & Burr FA (1988) Advantages and limitations of using Spm as a transposon tag. In: Nelson O (ed) Plant Transposable Elements (pp 149–159). Plenum Press, New York.

    Chapter  Google Scholar 

  • Cook D & Fedoroff N (1992) Regulation of Spm promoter activity by the Spm-encoded tnpA gene product and DNA methylation. Maize Genet Coop Newslet 66: 11–12.

    Google Scholar 

  • Coupland G, Baker B, Schell J & Starlinger P (1988) Characterization of the maize transposable element Ac by internal deletions. EMBO J 7: 3653–3659.

    PubMed  CAS  Google Scholar 

  • Coupland G, Plum C, Chatterjee S, Post A & Starlinger P (1989) Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc Natl Acad Sci USA 86: 9385–9388.

    Article  PubMed  CAS  Google Scholar 

  • Döring H-P & Starlinger P (1986) Molecular genetics of transposable elements in plants. Annu Rev Genet 20: 175–200.

    Article  PubMed  Google Scholar 

  • Fedoroff NV (1983) Controlling elements in maize. In: Shapiro J (ed) Mobile Genetic Elements (pp 1–63). Academic Press, New York.

    Google Scholar 

  • Fedoroff N (1989a) Maize transposable elements. In: Berg D & Howe M (eds) Mobile DNA (pp 375–411). American Society for Microbiology, Washington.

    Google Scholar 

  • Fedoroff NV (1989b) The heritable activation of cryptic Suppressor-mutator elements by an active element. Genetics 121: 591–608.

    PubMed  CAS  Google Scholar 

  • Fedoroff NV & Banks JA (1988) Is the Suppressor-mutator element controlled by a basic developmental regulatory mechanism? Genetics 120: 559–577.

    PubMed  CAS  Google Scholar 

  • Fedoroff N, Wessler S & Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35: 243–251.

    Article  Google Scholar 

  • Fedoroff N, Masson P, Banks J & Kingsbury J (1988) Positive and negative regulation of the Suppressor-mutator element. In: Nelson O (ed) Plant Transposable Elements (pp 1–15). Plenum Press, New York.

    Chapter  Google Scholar 

  • Feldmar S & Kunze R (1991) The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. EMBO J 10: 4003–4010.

    PubMed  CAS  Google Scholar 

  • Fowler RB & Peterson PA (1978) An altered state of a specific En regulatory element induced in a maize tiller. Genetics 90: 761–782.

    PubMed  CAS  Google Scholar 

  • Frey M, Reinecke J, Grant S, Saedler H & Gierl A (1990) Excision of the En/Spm transposable element of Zea mays requires two element-encoded proteins. EMBO J 9: 4037–4044.

    PubMed  CAS  Google Scholar 

  • Gierl A, Liitticke S & Saedler H (1988) TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J 7: 4045–4053.

    PubMed  CAS  Google Scholar 

  • Grant SR, Gierl A & Saedler H (1990) En/Spm encoded tnpA protein requires a specific target sequence for suppression. EMBO J 9: 2029–2035.

    PubMed  CAS  Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Cedar H, & Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292: 860–861.

    Article  PubMed  CAS  Google Scholar 

  • Hardeman KJ & Chandler VL (1989) Characterization of bzl mutants isolated from Mutator stocks with high and low numbers of Mul elements. Dev Genetics 10: 460–472.

    Article  CAS  Google Scholar 

  • Hershberger RJ, Warren CA & Walbot V (1991) Mutator activity in maize correlates with the presence and expression of Mu9, a new Mu transposable element. Proc Natl Acad Sci USA 88: 10198–10202.

    Article  PubMed  CAS  Google Scholar 

  • Houba-Hérin N, Becker D, Post A, Larondelle Y & Starlinger P (1990) Excision of a Ds-like maize transposable element (Ac) in a transient assay in Petunia is enhanced by a truncated coding region of the transposable element Ac. Mol Gen Genet 224: 17–23.

    Article  PubMed  Google Scholar 

  • Izawa T, Miyazaki C, Yamamoto M, Terada R, Iida S & Shimamoto K (1991) Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.). Mol Gen Genet 227: 391–396.

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Carland FM, Maliga P & Dooner HK (1989) Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science 244: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Goupland G, Uhrig H, Starlinger P & Salamini F (1988) Transposition of the maize transposable element Ac in Solanum tuberosum. Mol Gen Genet 213: 285–290.

    Article  CAS  Google Scholar 

  • Kunze R & Starlinger P (1989) The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J 8: 3177–3185.

    PubMed  CAS  Google Scholar 

  • Kunze R, Stochaj U, Laufs J & Starlinger P (1987) Transcription of transposable element Activator (Ac) of Zea mays L. EMBO J 6: 1555–1563.

    PubMed  CAS  Google Scholar 

  • Kunze R, Starlinger P & Schwartz D (1988) DNA methylation of the maize transposable element Ac interferes with its transcription. Mol Gen Genet 214: 325–327.

    Article  CAS  Google Scholar 

  • Martienssen R, Barkan A, Taylor WC & Freeling M (1990) Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes and Dev 4: 331–343.

    Article  PubMed  CAS  Google Scholar 

  • Masson P & Fedoroff N (1989) Mobility of the maize Suppressor-mutator element in transgenic tobacco cells. Proc Natl Acad Sci USA 86: 2219–2223.

    Article  PubMed  CAS  Google Scholar 

  • Masson P, Surosky R, Kingsbury J, & Fedoroff NV (1987) Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics 117: 117–137.

    PubMed  CAS  Google Scholar 

  • Masson P, Rutherford G, Banks JA & Fedoroff N (1989) Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell 58: 755–765.

    Article  PubMed  CAS  Google Scholar 

  • Masson P, Strem M & Fedoroff N (1991) The tnpA and tnpD gene products of the Spm element are required for transposition in tobacco. The Plant Cell 3: 73–85.

    PubMed  CAS  Google Scholar 

  • McClintock B (1945) Cytogenetic studies of maize and Neurospora. Carnegie Inst Wash Yrbk 44: 108–112.

    Google Scholar 

  • McClintock B (1946) Maize genetics. Carnegie Inst Wash Yrbk 45: 176–186.

    CAS  Google Scholar 

  • McClintock B (1948) Mutable loci in maize. Carnegie Inst Wash Yrbk 47: 155–169.

    Google Scholar 

  • McClintock B (1953) Mutation in maize. Carnegie Inst Wash Yrbk 52: 227–237.

    Google Scholar 

  • McClintock B (1954) Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst Wash Yrbk 53: 254–260.

    Google Scholar 

  • McClintock B (1955) Controlled mutation in maize. Carnegie Inst Wash Yrbk 54: 245–255.

    Google Scholar 

  • McClintock B (1957) Genetic and cytological studies of maize. Carnegie Inst Wash Yrbk 56: 393–401.

    Google Scholar 

  • McClintock B (1958) The suppressor-mutator system of control of gene action in maize. Carnegie Inst Wash Yrbk 57: 415–452.

    Google Scholar 

  • McClintock B (1959) Genetic and cytological studies of maize. Carnegie Inst Wash Yrbk 58: 415–429.

    Google Scholar 

  • McClintock B (1961) Further studies of the suppressor-mutator system of control of gene action in maize. Carnegie Inst Wash Yrbk 60: 469–476.

    Google Scholar 

  • McClintock B (1962) Topographical relations between elements of control systems in maize. Carnegie Inst Wash Yrbk 61: 448–461.

    Google Scholar 

  • McClintock B (1963) Further studies of gene-control systems in maize. Carnegie Inst Wash Yrbk 62: 486–493.

    Google Scholar 

  • McClintock B (1964) Aspects of gene regulation in maize. Carnegie Inst Wash Yrbk 63: 592–602.

    Google Scholar 

  • McClintock B (1965a) Components of action of the regulators Spm and Ac. Carnegie Inst Wash Yrbk 64: 527–534.

    Google Scholar 

  • McClintock B (1965b) The control of gene action in maize. Brookhaven Symp Biol 18: 162–184.

    Google Scholar 

  • McClintock B (1967) Regulation of pattern of gene espression by controlling elements in maize. Carnegie Inst Wash Yrbk 65: 568–578.

    Google Scholar 

  • McClintock B (1971) The contribution of one component of a control system to versatility of gene expression. Carnegie Inst Wash Yrbk 70: 5–17.

    Google Scholar 

  • McClintock B (1978) Mechanisms that rapidly reorganize the genome. Stadler Genet Symp 10: 25–48.

    Google Scholar 

  • Menssen A, Höhmann S, Martin W, Schnable PS, Peterson PA, Saedler H & Gierl A (1990) The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J 9: 3051–3057.

    PubMed  CAS  Google Scholar 

  • Neuffer MG (1966) Stability of the suppressor element in two mutator systems at the A1 locus in maize. Genetics 53: 541–549.

    PubMed  CAS  Google Scholar 

  • Pereira A, Cuypers H, Gierl A, Schwarz-Sommer Z & Saedler H (1986) Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J 5: 835–841.

    PubMed  CAS  Google Scholar 

  • Peschke VM & Phillips RL (1991) Activation of the maize transposable element Suppressor-mutator (Spm) in tissue culture. Theor Appl Genet 81: 90–97.

    Article  Google Scholar 

  • Peschke VM, Phillips RL & Gengenbach BG (1987) Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238: 804–807.

    Article  PubMed  CAS  Google Scholar 

  • Peterson PA (1966) Phase variation of regulatory elements in maize. Genetics 54: 249–266.

    PubMed  CAS  Google Scholar 

  • Pohlman RF, Fedoroff NV & Messing J (1984) The nucleotide sequence of the maize controlling element Activator. Cell 37: 635–643.

    Article  PubMed  CAS  Google Scholar 

  • Qin M & Ellingboe AH (1990) A transcript identified by MuA of maize is associated with Mutator activity. Mol Gen Genet 224: 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Qin M, Robertson DS & Ellingboe AH (1991) Cloning of the Mutator tranposable element MuA2: a putative regulator of somatic mutability of the al-Mum2 allele in maize. Genetics 129: 845–854.

    PubMed  CAS  Google Scholar 

  • Raina R, Cook D & Fedoroff N (1993) The maize Spm transposable element has an enhancerinsensitive promoter. Proc Natl Acad Sci USA: 90: 6355–6359.

    Article  PubMed  CAS  Google Scholar 

  • Robertson DS (1978) Characterization of a Mutator sytem in maize. Mut Research 51: 2128.

    Google Scholar 

  • Robertson DS (1980) The timing of Mu activity in maize. Genetics 94: 969–978.

    PubMed  CAS  Google Scholar 

  • Robertson DS (1983) A possible dose-dependent inactivation of Mutator (Mu) in maize. Mol Gen Genet 191: 86–90.

    Article  Google Scholar 

  • Robertson DS (1985) Differential activity of the maize Mutator Mu at different loci and in different cell lineages. Mol Gen Genet 200: 9–13.

    Article  Google Scholar 

  • Robertson DS (1986) Genetic studies on the loss of Mu Mutator activity in maize. Genetics 113: 765–773.

    PubMed  CAS  Google Scholar 

  • Robertson DS & Mascia PN (1981) Tests of 4 controlling-element systems of maize for Mutator activity and their interaction with Mu Mutator. Mut Research 84: 283–289.

    Article  CAS  Google Scholar 

  • Robertson DS & Stinard PS (1989) Genetic Analyses of putative two-element systems regulating somatic mutability in Mutator-induced aleurone mutants of maize. Dev. Genetics 10: 482–506.

    Google Scholar 

  • Schiefelbein JW, Raboy V, Kim H-Y & Nelson OE (1988) Molecular characterization of Suppressor-mutator (5pm)-induced mutations at the bronze-1 locus. In: Nelson O (ed) Plant Transposable Elements (pp 261–278). Plenum Press, New York.

    Chapter  Google Scholar 

  • Schläppi M & Fedoroff N (1992) Promotion of early Spm transposition and repression of Spm transcription by TnpA in transgenic tobacco. Maize Genet Coop Newslet 66: 12–14.

    Google Scholar 

  • Schläppi M, Smith D, & Fedoroff N (1993) TnpA trans-activates methylated maize Suppressor-mutator transposable elements in transgenic tobacco. Genetics 133: 1009–1021.

    PubMed  Google Scholar 

  • Schnable PS & Peterson PA (1988) The Mutator-related Cy transposable element of Zea mays L. behaves as a near-mendelian factor. Genetics 120: 587–596.

    PubMed  CAS  Google Scholar 

  • Schnable PS & Peterson PA (1989) Genetic evidence of a relationship between two maize transposable element systems: Cy and Mutator. Mol Gen Genet 215: 317–321.

    Article  CAS  Google Scholar 

  • Schnable PS, Peterson PA & Saedler H (1989) The bz-rcy allele of the Cy transposable element system of Zea mays contains a Mu-like element insertion. Mol Gen Genet 217: 459–463.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz D (1989) Gene-controlled cytosine demethylation in the promoter region of the Ac transposable element in maize. Proc Natl Acad Sci USA 86: 2789–2793.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz D & Dennis E (1986) Transposase activity of the Ac controlling element in maize is regulated by its degree of methylation. Mol Gen Genet 205: 476–482.

    Article  CAS  Google Scholar 

  • Trentmann SM, Saedler H & Gierl A (1993) The transposable element En/Spm encoded TNPA protein contains a DNA binding and dimerization domain. Mol Gen Genet.

    Google Scholar 

  • Van Sluys MA, Tempé J, & Fedoroff N (1987) Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J 6: 3881–3889.

    PubMed  Google Scholar 

  • Walbot V (1986) Inheritance of Mutator activity in Zea mays as assayed by somatic instability of the bz2-Mul allele. Genetics 114: 1293–1312.

    PubMed  CAS  Google Scholar 

  • Walbot V (1988) Reactivation of the Mutator transposable element system following gamma irradiation of seed. Mol Gen Genet 212: 259–264.

    Article  CAS  Google Scholar 

  • Walbot V (1991) The Mutator transposable element family of maize. Genet Eng 13: 1–37.

    Article  CAS  Google Scholar 

  • Walbot V (1992) Reactivation of Mutator transposable elements of maize by ultraviolet light. Mol Gen Genet 234: 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Walbot V & Warren C (1988) Regulation of Mu element copy number in maize lines with an active or inactive Mutator transposable element system. Mol Gen Genet 211: 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Yoder JI, Palys J, Alpert K & Lassner M (1988) Ac transposition in transgenic tomato plants. Mol Gen Genet 213: 291–296.

    Article  CAS  Google Scholar 

  • Zhao Z-Y & Sundaresan V (1991) Binding sites for maize nuclear proteins in the terminal inverted repeats of the Mul transposable element. Mol Gen Genet 229: 17–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fedoroff, N.V., Chandler, V. (1994). Inactivation of Maize Transposable Elements. In: Paszkowski, J. (eds) Homologous Recombination and Gene Silencing in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1094-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1094-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4478-3

  • Online ISBN: 978-94-011-1094-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics