Skip to main content

Somatic Embryogenesis in Slash Pine (Pinus Elliottii Engelm.)

  • Chapter
Somatic Embryogenesis in Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 44-46))

Abstract

Slash pine (Pinus elliottii Engelm.) is a hard yellow pine indigenous to southeastern United states. It is a rapid-growing, straight, symmetrical tree attaining a height of 100 ft, with a diameter of 1 m. The wood is considered to be the hardest, strongest, and heaviest of all commercial conifers in the United States. It starts producing seeds at the age of 15–20 years with good production every 2–3 years. It is one of the two southern pines used for naval stores and also one of the most frequently planted timber species in North America (Lohrey & Kossuth, 1990). It is favored by many forest managers because of its fast growth and excellent utility for pulp, lumber, and poles (Sheffield et al., 1983). It has the smallest native range of the four southern pines and grows naturally from south of South Carolina to central Florida and west to Louisiana. However, its range has been extended with northern plantings in Tennessee and western planting in east Texas where it now seeds naturally (Lohrey & Kossuth, 1990). Plantings outside its natural range mostly occurred over three decades spanning from the early 1950s through the latter 1970s. During this time, the slash pine ecosystem increased by 22% (Sheffield et al., 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becwar, M.R., S.R. Wann, M.A. Johnson, S.A. Verhagen, R.P. Feirer & R. Nagmani, 1988. Development and characterization of in vitro embryogenic systems in conifers. In: M.R. Ahuja (Ed). Somatic cell genetics of woody plants, pp. 1–18. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Becwar, M.R., T.L. Noland & J.L. Wyckoff, 1989. Maturation, germination, and conversion of Norway spruce (Picea abies L.) somatic embryos to plants. In Vitro Cell. & Dev. Biol. 25: 575–580.

    Article  Google Scholar 

  • Becwar, M.R., R. Nagmani & S.R. Wann, 1990. Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can. J. For. Res. 20: 810–817.

    Article  Google Scholar 

  • Belarosa, R., L.H. Mo & S. von Arnold, 1992. The influence of auxin and cytokinin on proliferation and morphology of somatic embryos. Ann. Bot. 70: 199–206.

    Google Scholar 

  • Blakeslee, G.M., 1983. Major diseases affecting slash pine. In: E.L. Stone (Ed). The managed slash pine ecosystem, pp. 257–272. School For. Res. Cons., Univ. Fla. Gainesville, FL 3261.

    Google Scholar 

  • Boulay, M.P., P.K. Gupta, P. Krogstrup & D.J. Durzan, 1988. Development of somatic embryos from cell suspension cultures of Norway spruce (Picea abies Karst.). Plant Cell Rep. 7: 134–137.

    Article  Google Scholar 

  • Charest, P.J., N. Calero, D. Lachance, R.S. Datla, L.C. Duchesne & E.W.T. Tsang, 1993. Microprojectile-DNA delivery in conifer species: Factors affecting assessment of transient gene expression using the β-glucuronidase reporter gene. Plant Cell Rep. 12: 189–193.

    Article  CAS  Google Scholar 

  • Durzan, D.J. & P.K. Gupta, 1987. Somatic embryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures. Plant Sci. 52: 229–235.

    Article  CAS  Google Scholar 

  • Ellis, D.D., D. McCabe, D. Russell, B. Martinell & B.H. McGown, 1991. Expression of inducible promoters in a gymnosperm, Picea glauca (white spruce). Plant Molec. Biol. 17: 19–27.

    Article  CAS  Google Scholar 

  • Ellis, D.D., D.E. McCabe, S. McInnis, R. Ramachandran, D.R. Russell, K.M. Wallace, B.J. Martinell, D.R. Roberts, K.F. Raffa & B.H. McCowan, 1993. Stable transformation of Picea glauca by electrical discharge particle acceleration — A model system for conifer transformation. BioTechnology 11: 84–89.

    Article  CAS  Google Scholar 

  • Finer, J.J., H.B. Kriebel & M.R. Becwar, 1989. Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.). Plant Cell Rep. 8: 203–206.

    Article  Google Scholar 

  • Guerineau, F., L. Brooks, J. Meadows, A. Lucy, C. Robinson & P. Mullineaux, 1990. Sulfonamide resistance gene for plant transformation. Plant Mol. Biol. 15: 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, P.K. & D.J. Durzan, 1986. Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio/Technology 4: 643–645.

    Article  Google Scholar 

  • Gupta, P.K. & D.J. Durzan, 1987. Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine. Bio/Technology 5: 147–151.

    Article  Google Scholar 

  • Gupta, P.K., D.J. Durjan & B.J. Finkle, 1987. Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (loblolly pine) after thawing from liquid nitrogen. Can. J. For. Res. 17: 1130–1134.

    Article  Google Scholar 

  • Gupta, P.K., G. Pullman, R. Timmis, M. Kreitinger, W.C. Carlson, J. Grob & E. Welty, 1993. Forestry in the 21st Century: Biotechnology of somatic embryogenesis. Bio/Technology 11: 454–459.

    Article  Google Scholar 

  • Hakman, I. & L.C. Fowke, 1987. Somatic embryogenesis in Picea glauca (white spruce) and Picea mariana (black spruce). Can. J. Bot. 65: 656–659.

    Article  Google Scholar 

  • Hakman, I. & S. von Arnold, 1985. Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). J. Plant Physiol. 121: 149–158.

    Article  CAS  Google Scholar 

  • Hakman, I., L.C. Fowke, S. von Arnold & T. Eriksson, 1985. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci. 38: 53–59.

    Article  Google Scholar 

  • Hatzopoulos, P., F. Fong & Z.R. Sung, 1990. Abscisic acid regulation of Dc8, a carrot embryonic gene. Plant Physiol. 94: 690–695.

    Article  PubMed  CAS  Google Scholar 

  • Jain, S.M. & R.J. Newton & E.J. Soltes, 1988. Enhancement of embryogenesis in Norway spruce. J. Theo. App. Gen. 76: 501–506.

    Google Scholar 

  • Jain, S.M., N. Dong & R.J. Newton, 1989. Somatic embryogenesis in slash pine (Pinus elliottii) from immature embryos cultured in vitro. Plant Sci. 65: 233–241.

    Article  Google Scholar 

  • Jain, S.M., C. Oker-Blom., E. Pehu & R.J. Newton, 1992. Genetic engineering: An additional tool for plant improvement. Agric. Sci. Finl. 1: 323–338.

    CAS  Google Scholar 

  • Jefferson, R.A., 1987. Assaying for chimeric genes in plants; The GUS gene fusion system. Plant Mol. Biol. Rptr. 5: 387–405.

    Article  CAS  Google Scholar 

  • Klein, T.M., M. Fromm, A. Weissinger, D. Tomes, S. Schaff, M. Sletten & J.C. Sanford, 1988. Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc. Nat. Acad. Sci. USA 85: 4305–4309.

    Article  PubMed  CAS  Google Scholar 

  • Laine, E. & A. David, 1990. Somatic embryogenesis in immature embryos and protoplasts of Pinus caribaea. Plant Sci. 69: 215–224.

    Article  Google Scholar 

  • Litts, J.C., G.W. Colwell, R.L. Chakerian & R.S. Quatrano, 1987. The nucleotide sequence of a cDNA clone encoding the wheat Em protein. Nucl. Acids Res. 15: 3607–3618.

    Article  PubMed  CAS  Google Scholar 

  • Lohrey, R.E. & S.V. Kossuth, 1990. Pinus elliottii Engelm. slash pine. In: R.M. Burns & B.H. Honkala (Eds). Silvics of North America, vol. 1, pp. 338–347. Conifers, Agriculture Handbook 654 FS-USDA, Washington, DC.

    Google Scholar 

  • Newton, R.J., H.S. Yibrah, N. Dong, D.H. Clapham & S. von Arnold, 1992. Expression of an abscisic acid responsive promoter in Picea abies (L.) Karst, following bombardment from an electric discharge particle accelerater. Plant Cell Rep. 11: 188–191.

    Article  CAS  Google Scholar 

  • Newton, R.J., N. Dong, K. Marek-Swize & J. Cairney, 1993. Transformation of slash pine. 22nd Southern Forest Tree Improvement Conference. Holiday Inn-Buckhead, Atlanta, GA, June 14–17, in press.

    Google Scholar 

  • Roberts, D.R., B.S. Flinn, D.T. Webb, F.B. Webster & B.C.S. Sutton, 1989. Characterization of immature embryos of interior spruce by SDS-PAGE and microscopy in relation to their competence for somatic embryogenesis. Plant Cell Rep. 8: 285–288.

    Article  CAS  Google Scholar 

  • Seffens, W.S., C. Almoguera, H.D. Wilde, R.A. Vonder Haar & T.L. Thomas, 1990. Molecular analysis of a phylogenetically conserved carrot gene: Environmental and developmental regulation. Dev. Genet. 11: 65–76.

    Article  PubMed  CAS  Google Scholar 

  • Sheffield, R.M., H.A. Knight & J.P. McClure, 1983. The slash pine resource. In: E.L. Stone (Ed). The managed slash pine ecosystem, pp. 4–23. School For. Res. Cons., Univ. Fla. Gainesville, FL 3261.

    Google Scholar 

  • Skriver, K. & J. Mundy, 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503–512.

    PubMed  CAS  Google Scholar 

  • Snyder, E.B., P.C. Wakely & O.O. Wells, 1967. Slash pine provenance tests. J. For. 65: 414–420.

    Google Scholar 

  • Stomp, A.-M., Weissinger, A. & R.R. Sederoff, 1991. Transient expression from microproject-ile-mediated DNA transfer in Pinus taeda. Plant Cell Rep. 10: 187–190.

    Article  Google Scholar 

  • Switzer, G.L., 1959. The influence of geographic seed source on the performance of slash pine on the Northeast Mississippi Experimental Forest. Miss State Univ. Agric. Exper. Stn, Information Sheet 652. State College. 2 p.

    Google Scholar 

  • Tautorus, T.E., L.C. Gowke & D.I. Dunstan, 1991. Somatic embryogenesis in conifers. Can. J. Bot. 69: 1873–1899.

    Article  Google Scholar 

  • von Arnold, S., 1987. Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. J. Plant Physiol. 128: 233–244.

    Article  Google Scholar 

  • von Arnold, S. & I. Hakman, 1986. Effect of sucrose on initiation of embryogenic callus cultures from mature zygotic embryos of Picea abies (L.) Karst. (Norway spruce). J. Plant Physiol. 122: 261–265.

    Article  Google Scholar 

  • von Arnold, S. & I. Hakman, 1988. Regulation of somatic embryo development in Picea abies by abscisic acid (ABA). J. Plant Physiol. 132: 164–169.

    Article  Google Scholar 

  • Webb, D.T., F. Webster, B.S. Flinn, D.R. Roberts & D.D. Ellis, 1989. Factors influencing the induction of embryogenic and caulogenic callus from embryos of Picea glauca and P. engel-manii. Can. J. For. Res. 19: 1303–1308.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Newton, R.J., Marek-Swize, K.A., Magallanes-Cedeno, M.E., Dong, N., Sen, S., Jain, S.M. (1995). Somatic Embryogenesis in Slash Pine (Pinus Elliottii Engelm.). In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 44-46. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0960-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0960-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4415-8

  • Online ISBN: 978-94-011-0960-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics