Skip to main content

Blue Electron Distributions in Diamagnetic Reduced Heteropoly Tungstates. Insights Concerning Conduction Pathways and Spin Coupling Patterns. 183W NMR Chemical Shift Calculations

  • Chapter
Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 10))

Abstract

This is a paper in a continuing series about roles played by delocalized “blue” electrons and by unpaired electrons in determining properties and structures of heteropoly complexes and their blue reduction products. 183W NMR data for α-[SiW12O40]4-, α-[P2W18O62]6-, α-[P2Mo3W15O62]6-, α-[P2Mo6W12O62]6-, α1-[P2MoW17O62]6-, and α2-[P2MoW17O62]6- and the diamagnetic 2-electron reduction products of these, are combined with our earlier interpretations, yielding new insights about blue electron distributions, pathways for blue electron conduction and delocalization, and energy factors that determine these. MoVI is more easily reduced than WVI. Therefore, in each diamagnetic completely spin-coupled 2e-reduction product of the monomolybdenum derivatives, one of the added electrons is “anchored” on the Mo while the other is rapidly thermally hopping among several belt W’s.

A special extended spin echo pulse sequence was used to suppress acoustic ringing for those α1-and α2-183W spectra which have very large sweep widths.

The results show: (1) Those W’s that participate in delocalization of the blue electron(s) can be readily distinguished from those that do not. (2) The chemical shift for each W that receives blue electrons represents a coalesced signal from WVI, in which the W has no blue electron, and Wv in which it does. The chemical shifts for such W’s can therefore be used to calculate relative residency times of the blue electron on the various W’s. (3) This interpretation concludes that the delocalized blue electrons in the monomolybdenum blues inhabit in each case almost exclusively just the one 6W belt adjacent to the Mov atom, spending the greatest proportion of time on the W atom(s) immediately adjacent to (corner sharing with) the Mov, and progressively less time on the progressively more distant W’s of the 6W belt adjacent to the Mov. (4) The added paired electrons prefer, by a substantial but not overwhelming margin, to reside on addenda atoms that are relatively close to one another. The blue electron’s spins are always completely paired by multiroute superexchange even though they are often not on adjacent addenda atoms. The electron pairing puts the complex in a lower energy state. The closer the atoms having added electrons, the shorter the superexchange pathways and the greater the opportunity for randomization of spins. This provides an electronic entropy drive favoring keeping the added electrons on atoms that are close to one another. (5) Orbital geometries make the preferred electron hopping and superexchange routes via corner sharing of MO6, octahedra rather than via edge sharing. Thus, at a given instant the 2 added electrons prefer to be on adjacent corner-sharing addenda; and, in the 18-tungsto complex, this would most commonly involve one Wv in each belt in corner-sharing eclipsed positions.

Addressee for the correspondence and reprints at Goergetown University

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. M. Kozik, C. F. Hammer, and L. C. W. Baker: J. Am. Chem. Soc. 108, 2748 (1986).

    Article  CAS  Google Scholar 

  2. M. Kozik, C. F. Hammer, and L. C. W. Baker: J. Am. Chem. Soc. 108, 7627 (1986).

    Article  CAS  Google Scholar 

  3. M. Kozik and L. C. W. Baker: J. Am. Chem. Soc. 109, 3159 (1987).

    Article  CAS  Google Scholar 

  4. T. L. Jorris, M. Kozik, N. Casañ-Pastor, P. J. Domaille, R. G. Finke, W. K. Miller, and L. C. W. Baker: J. Am. Chem. Soc. 109, 7402 (1987).

    Article  CAS  Google Scholar 

  5. M. Kozik, N. Casañ-Pastor, C. F. Hammer, and L. C. W. Baker: J. Am. Chem. Soc. 110, 7697 (1988).

    Article  CAS  Google Scholar 

  6. M. Kozik and L. C. W. Baker: J. Am. Chem. Soc. 112, 7604 (1990).

    Article  CAS  Google Scholar 

  7. R. Acerete, N. Casañ-Pastor, J. Bas-Serra, and L. C. W. Baker: J. Am. Chem. Soc. Ill, 6049 (1989).

    Google Scholar 

  8. N. Casañ-Pastor, P. Gomez-Romero, G. B. Jameson, and L. C. W. Baker: J. Am. Chem. Soc.113, 5658 (1991).

    Article  Google Scholar 

  9. N. Casañ-Pastor, J. Bas-Serra, E. Coronado, G. Pourroy, and L. C. W. Baker: J. Am. Chem. Soc.114, 10380 (1992).

    Article  Google Scholar 

  10. N. Casañ-Pastor and L. C. W. Baker: J. Am. Chem. Soc. 114, 10384 (1992).

    Article  Google Scholar 

  11. (a) M. T. Pope: Inorg. Chem. 11, 1973 (1972).

    Article  CAS  Google Scholar 

  12. M. T. Pope: Heteropoly and Isopoly Oxometalates ,Springer-Verlag, Berlin, Chapt. 6 (1983).

    Google Scholar 

  13. R. I. Buckley and R. J. H. Clark: Coord. Chem. Rev. 65, 167 (1986).

    Article  Google Scholar 

  14. M. B. Robin and P. Day: Adv. Inorg. Chem. Radiochem. 10, 248 (1967).

    Google Scholar 

  15. C. Sanchez, J. Livage, J. P. Launay, and M. Fournier: J. Am. Chem. Soc. 105, 6817 (1983).

    Article  CAS  Google Scholar 

  16. J. E. Toth and F. C. Anson: J. Am. Chem. Soc. 111, 2444 (1989).

    Article  CAS  Google Scholar 

  17. E. Papaconstantinou: Chem. Soc. Rev. 18, 1 (a review) (1989).

    Article  CAS  Google Scholar 

  18. For example: (a) C. Jasmin et al: J. Natl. Cancer Inst. 53, 469 (1974).

    CAS  Google Scholar 

  19. T. Yamase, H. Fujita, and K. Fukushima: Inorg. Chim. Acta 151, 15 (1988).

    Article  CAS  Google Scholar 

  20. For example: (a) N. Larnicol et al:. J. Gen. Virol. 55, 17 (1981).

    Article  CAS  Google Scholar 

  21. M. Herv6 et al:. Biochem. Biophys. Res. Commun. 116, 222 (1983).

    Article  Google Scholar 

  22. M. Souyri-Caporale et al: J. Gen. Virol. 65, 831 (1984).

    Article  CAS  Google Scholar 

  23. For example: (a) W. Rosenbaum et al: Lancet ,450 (1985).

    Google Scholar 

  24. C. L. Hill, M. S. Weeks, and R. F. Schinazi: J. Med. Chem. ,2767 (1990).

    Google Scholar 

  25. Y. Inouye et al: Chem. Pharm. Bull. 38, 285 (1990).

    Article  CAS  Google Scholar 

  26. E. Buimovici-Klein et al: Aids Resch. 2, 279 (1986).

    Article  CAS  Google Scholar 

  27. J. F. Keggin: Proc. Roy. Soc. A114, 75 (1934).

    Google Scholar 

  28. J. W. Illingsworth and J. F. Keggin: J. Chem. Soc ,575 (1935).

    Google Scholar 

  29. H. D’Amour and R. Allman: Kristallogr. Z. 143, 1 (1975).

    Google Scholar 

  30. A. F. Wells: Structural Inorganic Chemistry ,1st Ed., Oxford University Press: Oxford, p.344 (1945).

    Google Scholar 

  31. B. Dawson: Acta Crystallogr. 6, 113 (1953).

    Article  CAS  Google Scholar 

  32. H. D’Amour: Acta Crystallogr. B32, 729 (1976).

    Google Scholar 

  33. R. Contant and J. P. Ciabrini: J. Chem. Res. (M), 2601 (1977)

    Google Scholar 

  34. R. Contant and J. P. Ciabrini:J. Chem. Res. (S), 222 (1977).

    Google Scholar 

  35. R. Contant and J. P. Ciabrini: J. Inorg. Nucl. Chem. 43, 1525 (1981).

    Article  CAS  Google Scholar 

  36. M. L. Buess and G. L. Peterson: Rev. Sci. lustrum. 49, 1151 (1978).

    Article  CAS  Google Scholar 

  37. P. D. Ellis: (unpublished lecture notes).

    Google Scholar 

  38. I. P. Gerothanasis and J. Lauterwein: J. Magn. Res. 66, 32 (1986).

    Google Scholar 

  39. The experimental integration ratios for peaks in the 183W spectrum of the α1 isomer are 1.1:1.0:0.95:1.2:0.98:0.90:1.0:1.0:2.1:1.0:1.0:0.90:0.93:1.1:0.90:1.1. For the αc2 isomer they are 2.1:3.9:1.9:2.0:1.l.:1.8:3.8.

    Google Scholar 

  40. R. A. Prados and M. T. Pope: Inorg. Chem. 15, 2547 (1976).

    Article  CAS  Google Scholar 

  41. C. Sanchez, J. Livage, J. P. Launay, M. Fournier, and Y. Jeanin: J. Am. Chem. Soc. 104, 3194 (1982).

    Article  CAS  Google Scholar 

  42. G. M. Varga, Jr., E. Papaconstantinou, and M. T. Pope: Inorg. Chem. 9, 662 (1970).

    Article  CAS  Google Scholar 

  43. R. Acerete, C. F. Hammer, and L. C. W. Baker: J. Am. Chem. Soc. 104, 5384 (1982).

    Article  CAS  Google Scholar 

  44. In C4V symmetry, Lz operator mixes B2 ground state with B1 excited state while Lx and Ly operators mix B2 with excited state E. Thus the weighted average wavelength consists 1/3 of the λ from the B2-B1 transition and 2/3 of that from B2-E.

    Google Scholar 

  45. C. J. Jameson and H. S. Gutowsky: J. Chem. Phys. 40, 1714 (1964).

    Article  CAS  Google Scholar 

  46. K. Piepgrass and M. T. Pope: J. Am. Chem. Soc. 109, 1586 (1987).

    Article  CAS  Google Scholar 

  47. The six added electrons are localized in three adjacent isostructural WIV atoms, which Piepgrass and Pope [32] reported as “deshielded by about 1500 ppm” with respect to the WVI atoms in the non-reduced parents. We note that a calculation analogous to that given above in the text, similarly based on the electronic spectra [34] for the WIV,s yields a theoretically predicted downfield change of chemical shift for those atoms of 1350 ppm. The agreement seems excellent in view of the localization of the added electrons and probabilities for W-W bonds [32].

    Google Scholar 

  48. C. Tourné: Bull. Soc. Chim. France ,3199 (1967).

    Google Scholar 

  49. S. P. Harmalker, M. A. Leparulo, and M. T. Pope: J. Am. Chem. Soc. 105, 4286 (1983).

    Article  CAS  Google Scholar 

  50. J. J. Altenau, M. T. Pope, R. A. Prados, and H. So: Inorg. Chem. 14, 417 (1975).

    Article  CAS  Google Scholar 

  51. J. Barrows, G. B. Jameson, and M. T. Pope: J. Am. Chem. Soc. 107, 1771 (1985).

    Article  CAS  Google Scholar 

  52. V. E. Simmons: Doctoral Dissertation ,Boston University, Diss. Abstr. Internat. 24, 1391 (1963).

    Google Scholar 

  53. C. Brevard, R. Schimpf, G. Tourné, and C. M. Tourné: J. Am. Chem. Soc. 105, 7059 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael T. Pope Achim Müller

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kozik, M., Baker, L.C.W. (1994). Blue Electron Distributions in Diamagnetic Reduced Heteropoly Tungstates. Insights Concerning Conduction Pathways and Spin Coupling Patterns. 183W NMR Chemical Shift Calculations. In: Pope, M.T., Müller, A. (eds) Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity. Topics in Molecular Organization and Engineering, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0920-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0920-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4397-7

  • Online ISBN: 978-94-011-0920-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics