Skip to main content

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 2))

Abstract

Developmental homeostasis, measured as either fluctuating asymmetry or variance of morphological characters,increases with enzyme heterozygosity in many, but not all, natural populations. These results have been reported for Drosophila, monarch butterflies, honeybees, blue mussels, side-blotched lizards, killifish, salmonid fishes, guppies, Sonoran topminnows, herring, rufous-collared sparrows, house sparrows, brown hares, white-tailed deer, and humans. Because heterozygosity at a few loci can not predict heterozygosity of the entiry genome, these loci must be detecting localized zones that influence the developmental environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allard, R. W., 1975. The mating system and microevolution. Genetics 79s: 115–126.

    Google Scholar 

  • Baker, C. M. A. & C. Manwell, 19077. Heterozygosity of the sheep: Polymorphism of ’malic enzyme’, isocitrate dehydrogenase (Nadp), catalase and esterase. Aust. J. Biol. Sci. 30: 127–140.

    Google Scholar 

  • Bayne, B. L. & R. C. Newell, 1983. Physiological energetics in marine molluscs. In A. S. M. Saleudden and K. M. Wilburg (eds.) The Mollusca 4: 407–515. Academic Press, New York.

    Google Scholar 

  • Beacham, T. D. & R. E. Withler, 1985. Heterozygosity and morphological variability of chum salmon (Oncorhynchus keta) in southern British Columbia. Heredity 54: 313–322.

    PubMed  Google Scholar 

  • Beacham, T. D. & R. E. Withler, 1987. Developmental stability and heterozygosity in chum (Oncorhynchus keta) and pink (Oncorhynchus gorbuscha) salmon. Can. J. Zool 65: 1823–1826.

    Google Scholar 

  • Beacham, T. D., 1991. Developmental stability, heterozygosity, and genetic analysis of morphological variation in pink salmon ’Oncorhynchus gorbuscha’. Can. J. Zool. 69: 274–278.

    Google Scholar 

  • Beardmore, J. A. & S. A. Shami, 1979. Heterozygosity and the optimum phenotype under stabilising selection. Aquilo. Ser. Zool. 20: 100–110.

    Google Scholar 

  • Bijlsma-Meeles, E. & R. Bijlsma, 1988. The alcohol dehydrogenase polymorphism in Drosophila melanogaster. Fitness measurements and predictions under conditions with no alcohol stress. Genetics 120: 743–753.

    PubMed  CAS  Google Scholar 

  • Booth, C. L., P. S. Woodruff & S. J. Gould, 1990. Lack of significant associations between allozyme heterozygosity and phenotypic traits in the land snail Cerion. Evolution 44: 210–213.

    Google Scholar 

  • Bottini, E., F. Gloria-Bottini, P. Lucarelli, Al Polzonetti, F. Santoro & A. Ververi, 1979. Genetic polymorphisms and intrauterine development: Evidence of decreased heterozygosity in light for dates human newborn babies. Experientia 35: 1565–1567.

    PubMed  CAS  Google Scholar 

  • Bruckner, D., 1976. The influence of genetic variability on wing symmetry in honeybees. (Apis mellifera). Evolution 30: 100–108.

    Google Scholar 

  • Chakraborty, R., 1981. The distribution of the number of heterozygous loci in an individual in natural populations. Genetics 98: 461–466.

    PubMed  CAS  Google Scholar 

  • Chakraborty, R., 1987. Biochemical heterozygosity and phenotypi variability of polygenic traits. Heredity 59: 19–28.

    PubMed  Google Scholar 

  • Chakraborty, R. & N. Ryman, 1983. Relationship of mean and variance of genotypic values with heterozygosity per individual in a natural population. Genetics. 103: 149–152.

    PubMed  CAS  Google Scholar 

  • Clarke, G. M., G. W. Brand & M. J. Whitten, 1986. Fluctuating asymmetry: A technique for measuring developmental stress caused by inbreeding. Aust. J. Biol. Sci. 39: 145–153.

    Google Scholar 

  • Clarke, G. M., B. P. Oldroyd & P. L. Hunt, 1992. The genetic basic of developmental stability in Apis mellifera: heterozygosity versus genic balance. Evolution 46: 753–762.

    Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1987. Developmental stability of insecticide resistant phenotypes in the blowfly: A result of canalizing natural selection. Nature 325: 345–346.

    CAS  Google Scholar 

  • Coelho, J. R. & J. B. Mitton, 1988. Oxygen consumption during hovering is associated with genetic variation of enzymes in honey-bees. Functional Ecology 2: 141–146.

    Google Scholar 

  • Cothran, E. G., R. Chesser, M. H. Smith & P. E. Johns, 1983. Influences of genetic variability and maternal factors on fetal growth in white-tailed deer. Evolution 37: 282–291.

    Google Scholar 

  • Danzmann, R. G., M. M. Ferguson & F. W. Allendorf, 1987. Heterozygosity and oxygen-consumption rate as predictors of growth and developmental rate in rainbow trout. Physiol. Zool. 60: 211–220.

    Google Scholar 

  • Danzmann, R. G., M. M. Ferguson & F. W. Allendorf, 1988. Heterozygosity and components of fitness in a strain of rainbow trout. Biol. J. Linn. Soc. 39: 285–304.

    Google Scholar 

  • Diehl, W. J., 1989. Genetics of carbohydrate metabolism and growth in Eisemia foetida (Oligochataea: Lumbricidae). Heredity 61: 379–387.

    Google Scholar 

  • Diehl, W. J., P. M. Gaffney & R. K. Koehn, 1986. Physiological and genetic aspects of growth in the mussel Mytilus edulis. I. Oxygen consumption, growth, and weight loss. Physiol Zool. 59:201–211.

    Google Scholar 

  • Diehl, W. P., P. M. Gaffney, J. H. McDonald & R. K. Koehn, 1985. Relationship between weight standardized oxygen consumption and multiple-locus heterozygosity in the marine mussel Mytilus edulis L. (Mollusca), pp. 531–536 in Proceedings of the 19th European Marine Biology Symposium,edited by P. Gibbs. Cambridge University Press, Cambridge.

    Google Scholar 

  • DiMichele, L., K. Paynter & D. A. Powers, 1991. Lactate dehydrogenase-B allozymes directly affect development of Fundulus heteroclitus. Science 253: 898–900.

    PubMed  CAS  Google Scholar 

  • DiMichele, L. & D. A. Powers, 1991. Developmental heterochrony and differential mortality in the model teleost, Fun- dulus heteroclitus. Physiological Zoology 64: 1426–1443.

    CAS  Google Scholar 

  • DiMichele, L. & D. A. Powers, 1982a. Physiological basis for swimming endurance differences between LDH-B genotypes of Fundulus heteroclitus. Science 216: 1014–1016.

    PubMed  CAS  Google Scholar 

  • DiMichele, L. & D. A. Powers, 1982b. LDH-B genotype specific hatching times of Fundulus heteroclitus embryos. Nature 296: 560–563.

    Google Scholar 

  • DiMichele, L. & D. A. Powers, 1984. Developmental and oxygen consumption differences between LDH-B genotypes of Fundulus heteroclitus and their effect on hatching times. Physiol.. Zool. 57: 52–56.

    CAS  Google Scholar 

  • Dobzhansky, Th. & B. Wallace, 1953. The genetics of homeostasis in Drosophila. Proc. Natl. Acad. Sci. 39: 162–171.

    PubMed  CAS  Google Scholar 

  • Eanes, W. F., 1978. Morphological variance and enzyme heterozygosity in the monarch butterfly. Nature 276: 263–264.

    Google Scholar 

  • Eanes, W. F., 1981. Enzyme heterozygosity and morphological variance. Nature 290: 609–610.

    Google Scholar 

  • Fleischer, R. C., R. F. Johnston & W. J. Klitz, 1983. Allozymic heterozygosity and morphological variation in house sparrows.Nature 304: 628–630.

    PubMed  CAS  Google Scholar 

  • Garton, D. W., 1984. Relationship between multiple locus heterozygosity and physiological energetics of growth in the estuarine gastropod Thais haemastoma. Physiol. Zool. 57: 530–543.

    Google Scholar 

  • Garton, D. W., R. K. Koehn & T. M. Scott, 1984. Multiple-locus heterozygosity and the physiological energetics of growth in the coot clam, Mulinia lateralis, from a natural population. Genetics: 445–455.

    Google Scholar 

  • Gajardo, G. M. & J. A. Beardmore, 1989. Ability to switch reproductive mode in Artemia is related to maternal heterozygosity. Mar. Ecol. Prog. Ser. 55: 191–195.

    Google Scholar 

  • Govindaraju, D. R. & B. P. Dancik, 1987. Allozyme heterozygosity and homeostasis in germinating seeds of jack pine. Heredity 59: 279–283.

    Google Scholar 

  • Hall, J. G. & R. K. Koehn, 1983. The evolution of enzyme catalytic efficiency and adaptive inference from steady-state kinetic data. Evol. Biol. 16: 53–96.

    Google Scholar 

  • Handford, P., 1980. Heterozygosity at enzyme loci and morphological variation. Nature 286: 261–262.

    PubMed  CAS  Google Scholar 

  • Haiti, G. B., G. Lang, F. Klein & R. Willing, 1991. Relationships between allozymes, heterozygosity and morphological characters in red deer (Cervus elaphus), and the influence of selective hunting on allele frequency distributions. Heredity 66: 343–350.

    Google Scholar 

  • Hartl, G. B., F. Suchentrunk, R. Willing & R. Petznek, 1993.Allozyme heterozygosity and fluctuating asymmetry in the brown hare (Lepus europaeus): a test of the developmental homeostasis hypothesis, (in preparation).

    Google Scholar 

  • Hawkins, A. J. S., B. L. Bayne & A. J. Day, 1986. Protein turnover, physiological energetics and heterozygosity in the blue mussel Mytilus edulis: the basis of variable age-specific growth. Proc. R. Soc. Lond. B 229: 161–176.

    CAS  Google Scholar 

  • Hawkins, A. J. S., B. L. Bayne, A. J. Day, J. Rusing & C. M. Worrall, 1989. Genotype-dependent interrelations between energy metabolism, protein metabolism and fitness, pp. 283–292 in Reproduction, Genetics and Distributions of Marine Organisms, edited by J. S. Ryland and P. A. Tyler. Olsen and Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Kasule, F. K. & L. M. Cook, 1988. Phenotypic variability and heterozygosity at an esterase locus in the mosquito Aedus aegypti. Heredity 61: 427–431.

    PubMed  Google Scholar 

  • King, D. P. F., 1985. Enzyme heterozygosity associated with anatomical character variance and growth in the herring (Clupea harengus L.). Heredity 54: 289–296.

    PubMed  Google Scholar 

  • Kobyliansky, E. & G. Livshits, 1985. Differential fertility and morphological constitution of spouses. Z. Morph. Anthrop. 76: 95–105.

    CAS  Google Scholar 

  • Koehn, R. K., 1991. The cost of enzyme synthesis in the genetics of energy balance and physiological performance. Biol. J. Linn. Soc. 44:231–247.

    Google Scholar 

  • Koehn, R. K. & B. L. Bayne, 1988. Towards a physiological and genetical understanding of the energetics of the stress response.Biol. J. Linn. Soc. 37: 157–171.

    Google Scholar 

  • Koehn, R. K., W. J. Diehl & T. M. Scott, 1988. The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth rate in the coot clam, Mulinia lateralis. Genetics 118: 121–130.

    PubMed  CAS  Google Scholar 

  • Koehn, R. K. & P. M. Gaffney, 1984. Genetic heterozygosity and growth rate in Mytilus edulis. Mar. Biol. 82: 1–7.

    Google Scholar 

  • Koehn, R. K. & S. E. Shumway, 1982. A genetic/physiological explanation for differential growth rate among individuals of the American oyster, Crassostrea virginica (Gmelin). Mar. Biol. Letters 3: 35–42.

    Google Scholar 

  • Koehn, R. K., A. J. Zera & J. G. Hall, 1983. Enzyme polymorphism and natural selection, pp. 115–136 in Evolution of Genes and Proteins, edited by M. Nei and R. K. Koehn. Sinauer Associates Inc. Sunderland, Mass.

    Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1983. Developmental stability and enzyme heterozygosity in rainbow trout. Nature 301: 71–72.

    PubMed  CAS  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1984. Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes. Amer. Natur. 124: 540–551.

    Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1985. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308–314.

    Google Scholar 

  • Lerner, I. M., 1954. Genetic homeostasis. Oliver and Boyd, Edingburgh, 154 pp.

    Google Scholar 

  • Livshits, G. & E. Kobyliansky, 1984. Biochemical heterozygosity as a predictor of developmental homeostasis in man. Ann. Hum. Genet. 48: 173–184.

    PubMed  CAS  Google Scholar 

  • Livshits, G. & E. Kobyliansky, 1985. Lerner’s concept of developmental homeostasis and the problem of heterozygosity level in natural populations. Heredity 55: 341–353.

    PubMed  Google Scholar 

  • Makaveev, T., I. Venev & M. Baulov, 1978. Investigations on activity level and polymorphisms of some blood enzyme in farm animals with different growth energy. II. Correlations between homo- and heterozygosity of some protein and enzyme phenotypes and fattening ability and slaughter indices in various breeds of fattened pigs. Genet. Sel. 10: 229–236.

    Google Scholar 

  • McAndrew, B. J., R. D. Ward & J. A. Beardmore, 1982. Lack of relationship between morphological variance and enzyme heterozygosity in the plaice, Pleuronectes platessa. Heredity 48: 117–125.

    PubMed  CAS  Google Scholar 

  • Messier, S. & J. B. Mitton. Heterozygosity at the malate dehydrogenase locus and fluctating asymmetry in Apis mellifera. Evolution, in review.

    Google Scholar 

  • Mitton, J. B., 1978. Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature 273: 661–662.

    PubMed  CAS  Google Scholar 

  • Mitton, J. B., 1993. Theory and data pertinent to the relationship between heterozygosity and fitness, in The Natural History of Inbreeding and Outbreeding, edited by W. Shields and N. Thornhill. University of Chicago Press.

    Google Scholar 

  • Mitton, J. B., C. Carey & T. D. Kocher, 1986. The relation of enzyme heterozygosity to standard and active oxygen consumption and body size of tiger salamanders, Ambystoma tigrinum. Physiol. Zool. 59: 574–582.

    CAS  Google Scholar 

  • Mitton, J. B. & M. C. Grant, 1984. Associations among protein heterozygosity, growth rate, and developmental homeostasis.Ann. Rev. Ecol. Syst. 15: 479–499.

    Google Scholar 

  • Mitton, J. B. & R. K. Koehn, 1975. Genetic organization and adaptive response of allozymes to ecological variables in Fundulus heteroclitus. Genetics 79: 97–111.

    PubMed  CAS  Google Scholar 

  • Mitton, J. B. & R. K. Koehn, 1985. Shell shape variation in the blue mussel, Mytilus edulis L., and its association with enzyme heterozygosity. J. Exp. Mar. Biol. Ecol. 90: 73–80.

    Google Scholar 

  • Mitton, J. B. & B. A. Pierce, 1980. The distribution of individual heterozygosity in naural populations. Genetics 95: 1043–1054.

    PubMed  CAS  Google Scholar 

  • Mukai, T., L. E. Mettler & S. Chigusa, 1971. Linkage disequilibrium in a local population of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68: 1065–1069.

    PubMed  CAS  Google Scholar 

  • Mukai, T. & O. Yamaguchi, 1974. The genetic structure of natural populations of Drosphila melanogaster. XI. Genetic variability in a local population. Genetics 76: 339–366.

    PubMed  CAS  Google Scholar 

  • Parsons, P. A., 1971. Extreme environment heterosis and genetic loads. Heredity 26: 479–483.

    PubMed  CAS  Google Scholar 

  • Parsons, P. A., 1973. Genetics of resistance to environmental stresses in Drosophila populations. Ann. Rev. Genet. 7: 239–265.

    PubMed  CAS  Google Scholar 

  • Parsons, P. A., 1987. Evolutionary rates under environmental stress. Evolutionary Biology 21: 311–347.

    Google Scholar 

  • Paynter, K. T., I. DiMichele, S. C. Hand & D. A. Powers, 1991. Metabolic implications of LDH-B genotype during early development in Fundulus heteroclitus. J. Exp. Zool. 257: 24–33.

    CAS  Google Scholar 

  • Pierce, B. A. & J. B. Mitton, 1982. Allozyme heterozygosity and growth in the tiger salamander, Ambystoma tigrinum. J. Hered. 73: 250–253.

    PubMed  CAS  Google Scholar 

  • Place, A. R. & D. A. Powers, 1979. Genetic variation and relative catalytic efficiencies: LDH-B allozymes of Fundulus heteroclitus. Proc. Natl. Acad. Sci. U.S.A. 76: 2354–2358.

    PubMed  CAS  Google Scholar 

  • Powers, D. A., L. DiMichele & A. R. Place, 1983. The use of enzyme kinetics to predict differences in cellular metabolism,developmental rate, and swimming performance between LDH-B genotypes of the fish, Fundulus heteroclitus,in Isozymes: Current Topics in Biological and Medical Research.Volume 10, edited by G. Whitt and G. C. Markert. Academic Press, New York.

    Google Scholar 

  • Powers, D. A., G. S. Greaney & A. R. Place, 1979. Physiological correlation between lactate dehydrogenase genotype and haemoglobin function in killifish. Nature 277: 240–241.

    PubMed  CAS  Google Scholar 

  • Powers, D. A. & A. R. Place, 1978. Biochemical genetics of Fundulus heteroclitus (L.). I. Temporal and spatial variation in gene frequencies of Ldh-B, Mdh-A, Gpi-B, and Pgm-A. Biochem. Genet. 16: 593–607.

    PubMed  CAS  Google Scholar 

  • Prakash, S., 1974. Gene differences between the Sex Ratio and Standard gene arrangements of the X chromosome and linkage disequilibrium between the Standard gene arrangements and the X chromosome in Drosophila pseudoobscura. Genetics 77: 795–804.

    PubMed  CAS  Google Scholar 

  • Prakash, S. & R. C. Lewontin, 1968. A molecular approach to the study of genic heterozygosity in natural populations. III. Direct evidence of coadaptation in gene arrangements of Drosophila. Proc. Natl. Acad. Sci. U. S. A. 59: 398–450?

    PubMed  CAS  Google Scholar 

  • Prakash, S. & R. C. Lewontin, 1971. A molecular approach to the study of genic heterozygosity in natural populations. V. Further direct evidence of coadaptations in inversions of Drosophila. Genetics 69: 405–408.

    PubMed  CAS  Google Scholar 

  • Prakash, S. & R. B. Merritt, 1972. Direct evidence of genic differentiation between Sex Ratio and Standard gene arrangements of X chromosome in Drosophila pseudoobscura.Genetics 72: 169–175.

    PubMed  CAS  Google Scholar 

  • Policansky, D. & E. Zouros, 1977. Gene differences between the sex ratio and standard gene arrangements on the X chromosome in Drosophila persimilis. Genetics 85: 507–511.

    PubMed  CAS  Google Scholar 

  • Powers, D. A., M. Smith, I. Gonzalez-Villasenor, L. DiMichele, D. Crawford, G. Bernardi & T. Lauerman, 1993. A multidisciplinary approach to the selectionist/neutralist controversy using the model teleost Fundulus heteroclitus. Oxford Surveys in Evolutionary Biology, Oxford University Press.

    Google Scholar 

  • Quattro, J. M. & R. C. Vrijenhoek, 1989. Fitness differences among remnant populations of the endangered sonoran topminnow. Science 245: 976–978.

    PubMed  CAS  Google Scholar 

  • Robertson, F. W. & E. C. Reeve, 1952. Heterozygosity, environmental variation and heterosis. Nature 170: 286–287.

    PubMed  CAS  Google Scholar 

  • Rodhouse, P. G. & P. M. Gaffney, 1984. Effect of heterozygosity on metabolism during starvation in the American oyster, Crassostrea virginica. Mar. Biol. 80: 179–188.

    CAS  Google Scholar 

  • Rodhouse, P. G., J. H. McDonald, R. I. E. Newell & R. K. Koehn, 1986. Gamete production, somatic growth and multiple locus heterozygosity in Mytilus edulis L. Mar. Biol. 90’: 209–214.

    Google Scholar 

  • Rogers, S., R. Wells & M. Rechsteiner, 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368.

    PubMed  CAS  Google Scholar 

  • Scott, T. M. & R. K. Koehn, 1990. The effect of environmental stress on the relationship of heterozygosity to growth rate in the coot clam Mulinia lateralis (Say). J. Exp. Mar. Biol. Ecol., 135: 109–116.

    Google Scholar 

  • Scribner, K. T., M. H. Smith & P. E. Johns, 1989. Environmental and genetic components of antler growth in whitetailed deer. J. Mamm. 70: 284–291.

    Google Scholar 

  • Scribner, K. T. & M. H. Smith, 1990. Genetic variability and antler development, pp 460–473 in Horns, Pronghorns, and Antlers, edited by G. A. Bubenik and A. B. Bubenik. Springer, New York.

    Google Scholar 

  • Serradilla, J. M. & F. J. Ayala, 1983. Alloprocoptic selection: A mode of natural selection promoting polymorphism. Proc. Natl. Acad. Sci. USA 80: 2022–2025.

    PubMed  CAS  Google Scholar 

  • Singh, S. M. & E. Zouros, 1978. Genetic variation associated with growth rate in the American oyster (Crassostrea virginica).Evolution 32: 342–353.

    Google Scholar 

  • Smith, M. H., K. T. Scribner, P. E. Johns & O. E. Rhodes, Jr., 1991. Genetics and Antler development. Proc. 18th Congr. Internat. Union Game Biol., Krakow, Poland.

    Google Scholar 

  • Soulé, M. E., 1967. Phenetics of natural populations. II. Asymmetry and evolution in a lizard. Amer. Natur. 101: 141–160.

    Google Scholar 

  • Soulé, M. E., 1971. The variation problem: the gene-flow-variation hypothesis. Taxon 20: 37–50.

    Google Scholar 

  • Soulé, M. E., 1979. Heterozygosity and developmental stability: another look. Evolution 33: 396–401.

    Google Scholar 

  • Soulé, M. E., 1982. Allomeric variation. 1. The theory and some consequences. Amer. Natur. 120: 751–764.

    Google Scholar 

  • Soulé, M. E. & S. Y. Yang, 1974. Genetic variation sideblotched lizards on islands in the Gulf of California. Evolution 27: 593–600.

    Google Scholar 

  • Strauss, R. E., 1989. Associations between genetic heterozygosity and morphological variability in freshwater sculpins, genus Cottus (Teleostei: Cottidae). Biochem. Syst. Ecol. 17: 333–340.

    Google Scholar 

  • Strauss, R. E., 1991. Correlations between heterozygosity and phenotypic variability in Cottus (Teleostei: Cottidae): character components. Evolution 45: 1950–1956.

    Google Scholar 

  • Teska, W. R. M. H. Smith & J. M. Novak, 1990. Food quality, heterozygosity, and fitness correlates in Peromyscus polionotus.Evolution 44: 1318–1325.

    Google Scholar 

  • Van Valen, L., 1978. The statistics of variation. Evol. Theory 4: 33–43.

    Google Scholar 

  • Vrijenhoek, R. C. & S. Lerman, 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems.Evolution 36: 768–767.

    Google Scholar 

  • Ward, R. D., M. Sarfarazi, C.Azimi-Garakani & J. A. Beardmore,1985. Population genetics of polymorphisms in Cardiff newborn: Relationship betwene blood group and allozyme heterozygosity and birth weight. Hum. Hered. 35: 171–177.

    PubMed  CAS  Google Scholar 

  • Watt, W. B., 1985. Bieonergetics and evolutionary genetics: opportunities for new synthesis. Amer. Natur. 125: 118–143.

    CAS  Google Scholar 

  • Watt, W. B., 1986. Power and efficiency as indexes of fitness in matabolic organization. Amer. Natur. 127: 629–653.

    CAS  Google Scholar 

  • Watt, W. B., 1992. Eggs, enzymes, and evolution-natural genetic variants change insect fecundity. Proc. Natl. Acad. Sci. USA 89: 10608–10612.

    PubMed  CAS  Google Scholar 

  • Wooten, M. C. & M. H. Smith, 1986. Fluctuating asymmetry and genetic variability in a natural population of Mus musculus J. Mammalogy 67: 725–732.

    Google Scholar 

  • Yezerinac, S. M., S. C. Lougheed & P. Handford, 1992. Morphological variability and enzyme heterozygosity: individual and population level correlations. Evolution 46: 1959–1964.

    Google Scholar 

  • Zouros, E. & D. W. Foltz, 1987. The use of allelic isozyme variation for the study of heterosis, pp 2–59 in Isozymes: Current Topics in Biological and Medical research, Volume 13, edited by M. C. Rattazzi, J. G. Scandalios and G. S. Whitt. Alan R. Liss, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Therese Ann Markow

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitton, J.B. (1994). Enzyme heterozygosity, metabolism, and developmental stability. In: Markow, T.A. (eds) Developmental Instability: Its Origins and Evolutionary Implications. Contemporary Issues in Genetics and Evolution, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0830-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0830-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4357-1

  • Online ISBN: 978-94-011-0830-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics