Skip to main content

Ultrafiltration in peritoneal dialysis

  • Chapter
The Textbook of Peritoneal Dialysis

Abstract

There is a clinical requirement to remove excess body water, electrolytes, and other uremic toxins on a regular basis from patients with end-stage renal failure. During extracorporeal artificial kidney treatment, fluid is removed by simply applying a difference in hydrostatic or hydraulic pressure across the synthetic membrane. This approach is impractical during peritoneal dialysis; instead, fluid is removed from the patient by creating a difference in osmotic pressure between dialysis solution and blood. Thus, fluid removal during peritoneal dialysis is primarily by osmosis and is commonly referred to as osmotic ultrafiltration (or simply ultrafiltration) because of the similarities between transmembrane fluid movement by osmosis and ultrafiltration [1]. We will focus in this chapter on describing both the driving forces that move fluid across the peritoneum and the rate of solute transport that accompanies this transperitoneal fluid movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schultz SG. Basic principles inmembrane transport. London, Cambridge University Press, 1980.

    Google Scholar 

  2. Henderson LW, Leypoldt JK. Ultrafiltration withperitoneal dialysis. In: Nolph KD (ed), Peritoneal dialysis, 3rd edition. Dordrecht, Kluwer Academic 1989; pp.117–32.

    Chapter  Google Scholar 

  3. Rippe B, Stelin G. Simulations ofperitsoneal solute transport during CAPD. Application of two-pore formalism.Kidney Int 1989; 35: 1234–44.

    Article  CAS  Google Scholar 

  4. Stelin G, Rippe B. A phenomenlogical interpretation of thevariation in dialysate volume with dwell time in CAPD. Kidney Int 1990; 38:465–72.

    Article  PubMed  CAS  Google Scholar 

  5. Rippe B, Stelin G, Haraldsson B.Computer simulationsof peritoneal fluid transport in CAPD. Kidney Int 1991; 40: 315–25.

    Article  PubMed  CAS  Google Scholar 

  6. Dedrick RL, Flessner MF, Collins JM, Schultz JS. Is the peritoneum a membrane? ASAIO J 1982; 5: 1–8.

    Google Scholar 

  7. Curry FE. Mechanics and thermodynamics of transcapillary exchange. In: Renkin EM, Michel CC (eds), Handbookof physiology, section 2: the cardiovascular system, volume IV. Bethesda, American Physiological Society 1984; pp 309–74.

    Google Scholar 

  8. Nolph KD, Twardowski ZJ. The peritoneal dialysis system. In: Nolph KD (ed), Peritoneal dialysis, 3rd edition. Dordrecht, Kluwer Academic 1989; pp 13–27.

    Chapter  Google Scholar 

  9. Nolph KD. Peritoneal dialysis. In: Brenner BM, Rector Jr, FC (eds), The kidney, 4th edition. Philadelphia, W. B.Saunders 1991; pp 2299–335.

    Google Scholar 

  10. Maher JF, Hirszel P, Lasrich M. Effects of gastrointestinal hormones on transport by peritoneal dialysis. KidneyInt 1979; 16: 130–6.

    CAS  Google Scholar 

  11. Maher JF, Hirszel P, Bennett RR, Chakrabarti E. Amphotericin selectively increases peritoneal ultrafiltration. Am JKidney Dis 1984; 4: 285–8.

    CAS  Google Scholar 

  12. Nolph KD, Stoltz ML. Maher JF. Altered peritoneal permeability in patients with systemic vasculitis.Ann Intern Med 1971; 75: 753–5.

    PubMed  CAS  Google Scholar 

  13. Slingeneyer A, Mion C, Mourad G, Canaud B, Faller B, Béraud JJ. Progressivesclerosing peritonitis: a late and severe complication of maintenance peritonealdialysis. Trans Am Soc Artif Intern Organ 1983; 29: 633–40.

    CAS  Google Scholar 

  14. Khanna R, Nolph KD. Peritoneal morphology and microcirculation. In: Gokal R (ed), Continuous ambulatoryperitoneal dialysis. Edinburgh, Churchill Livingstone 1986; pp 14–37.

    Google Scholar 

  15. HendersonLW. The problem of peritoneal membrane areaand permeability. Kidney Int 1973; 3: 409–10.

    Article  PubMed  CAS  Google Scholar 

  16. Twardowski Z, Janicka L. Three exchanges with a 2.5-liter volume for continuous ambulatory peritoneal dialysis.Kidney Int 1981; 20: 281–4.

    Article  PubMed  CAS  Google Scholar 

  17. Kim D, Khanna R, Wu G, Clayton S, Oreopoulos DG. Continuousambulatory peritoneal dialysis with three-liter exchanges: a prospective study.Perit Dial Bull 1984; 4: 82–5.

    Google Scholar 

  18. MillerFN, Nolph KD, Harris PD, Rubin J, WiegmanDL, Joshua IG, Twardowski ZJ, Ghods AJ. Microvascular and clinicaleffects of altered peritoneal dialysis solutions. Kidney Int 1979; 15: 630–9.

    Article  PubMed  CAS  Google Scholar 

  19. HirszelP, Lasrich M, Maher JF. Augmentation of peritoneal mass transport by dopamine. Comparison with norepinephrine and evaluation ofpharmacologic mechanisms. J Lab Clin Med 1979; 94: 747–54.

    Google Scholar 

  20. Hebert SC, Schafer JA, Andreoli TE. Principles of membranetransport. In: Brenner BM, Rector Jr FC (eds), The kidney, 2nd edition. Philadelphia, W. B. Saunders 1981;pp 116–43.

    Google Scholar 

  21. Dampier WC. A history of science. London, CambridgeUniversity Press 1948; pp 249–51.

    Google Scholar 

  22. Van’tHoffJH. Unepropriété général de la matièrediluée. Svenska Vet Akad Handl 1886; 21: 17–43.

    Google Scholar 

  23. Keele CA, Neil E. The regulation of the constancy of the internal environment: body water and fluid. In: Keele CA,Neil E (eds), Samson Wright’s appliedphysiology, 12th edition. London, Oxford University Press 1992; pp 13–7.

    Google Scholar 

  24. Ryan GB.Mechanisms of proteinuria. In: Jones NF, Peters KD (eds), Recent advances inrenal medicine 2. Edinburgh, Churchill Livingstone 1982; pp 31–53.

    Google Scholar 

  25. StavermanAJ. The theory of measurement of osmoticpressure. Rec Trav Chim Pays-Bas 1951; 70: 344–52.

    Article  CAS  Google Scholar 

  26. Kiil F. Mechanism of osmosis. Kidney Int 1982; 21: 303–8.

    Article  PubMed  CAS  Google Scholar 

  27. MeschiaG, Setniker I. Experimental study of osmosisthrough a collodion membrane. J Gen Physiol 1958; 42: 429–44.

    Article  PubMed  CAS  Google Scholar 

  28. Wegner G. Chirugische Bemerkungen über die Peritonealhöhle,mit besonderer Berücksichtigung der Ovariotomie. Arch Fur Klin Chir 1877; 20: 51–145.

    Google Scholar 

  29. Starling EH, Tubby AH. On absorption from the secretion into the serous cavity. J Physiol 1894; 16: 140–55.

    PubMed  CAS  Google Scholar 

  30. Putnam TJ. The living peritoneum as a dialyzing membrane. Am JPhysiol 1923; 63: 548–65.

    CAS  Google Scholar 

  31. CunninghamRS. Studies on absorption from serouscavities. III. The effect of dextrose upon the peritoneal mesothelium. Am J Physiol 1920; 53: 488–94.

    Google Scholar 

  32. Palmer RA, Quinton WE, Gray JE. Prolonged peritoneal dialysis for chronic renalfailure. Lancet 1964; i: 700–2.

    Google Scholar 

  33. Popovich RP, Moncrief JW, Decherd JF, Bomar JB, Pyle WK. Thedefinition of a novel portable/wearableequilibrium peritoneal dialysis technique. [Abstract]. Abs Am Soc Artif Intern Organs 1976; 5:64.

    Google Scholar 

  34. Daugirdas JT, Ing TS, Gandhi VC, Hano JE, Chen W-T, Yuan L. Kinetics of peritoneal fluid absorption in patients with chronic renal failure. J Lab Clin Med 1980;95: 351–61.

    PubMed  CAS  Google Scholar 

  35. Popovich RP, Moncrief JW, Okutan M, Decherd JF. A model of the peritoneal dialysis system. Proc 25th Ann ConfEngr Med Biol 1966; 14: 172.

    Google Scholar 

  36. Spencer PC, Farrell PC. Solute and water transfer kinetics in CAPD. In: Gokal R (ed), Continuous ambulatoryperitoneal dialysis. Edinburgh, Churchill Livingstone 1986; pp 38–55.

    Google Scholar 

  37. Canaud B, Liendo-Liendo C, Claret G, Mion H, Mion C.Etude ‘in situ’ de la cinétique de l’ultra-filtration,en cours dedialysepéritonéale avec périodes de diffusion prolongée.Nephrologie 1980; 1:126–32.

    PubMed  CAS  Google Scholar 

  38. De Paepe M, Kips J, Belpaire F, Lameire N. Comparison of different volume markers in peritonealdialysis. In: Maher JF, Winchester JF (eds), Frontiers in peritoneal dialysis.New York, Field, Richand Associates 1986; pp 279–82.

    Google Scholar 

  39. PyleWK. Mass transfer in peritoneal dialysis. Ph.D.Dissertation. University of Texas at Austin 1981.

    Google Scholar 

  40. Pyle WK, Moncrief JW, Popovich RP. Peritoneal transport evaluation in CAPD. In: Moncrief JW, Popovich RP (eds), CAPD update. New York, Masson 1981; pp35–52.

    Google Scholar 

  41. Mistry CD. Glucose polymer as an osmotic agent in continuousperitoneal dialysis. MD Thesis. London, University of London 1989; pp 1–300.

    Google Scholar 

  42. Mactier RA, Khanna R, Twardowski Z, Moore H, Nolph KD. Contribution of lymphatic absorption to loss ofultrafiltration and solute clearances in continuousambulatory peritoneal dialysis. J Clin Invest 1987; 80: 1311–6.

    Article  PubMed  CAS  Google Scholar 

  43. MactierRA, Khanna R, Twardowski ZJ, Nolph KD. Roleof peritoneal cavity lymphatic absorption in peritoneal dialysis. Kidney Int 1987; 32: 165–72.

    Article  PubMed  CAS  Google Scholar 

  44. Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake offibrinogen and erythrocytes in the rat. Am J Physiol 1983; 244: H89–96.

    PubMed  CAS  Google Scholar 

  45. Rippe B, Stelin G, Ahlmén J. Lymphflow from the peritoneal cavity in CAPD patients. In: Maher JF, Winchester JF(eds), Frontiers in peritoneal dialysis.New York, Field, Rich and Associates 1986; pp 24–30.

    Google Scholar 

  46. Flessner MF, Dedrick Rl, Rippe B. Letter to the editor. ASAIO Trans 1989; 35: 178–80.

    Article  PubMed  CAS  Google Scholar 

  47. Starling EH. On the absorption of fluids from the connectivetissue sspaces. J Physiol 1895; 19: 312–26.

    Google Scholar 

  48. Daniels FH, Leonard EF, Cortell S. Glucose and glycerol compared as osmotic agents for peritoneal dialysis. KidneyInt 1984; 25: 20–25.

    CAS  Google Scholar 

  49. Heaton A, Ward MK, Johnston DG, Nicholson DV, Alberti KGMM, Kerr DNS. Short-term studies on the use of glycerol as anosmotic agent in continuous ambulatory peritoneal dialysis (CAPD). Clin Sci 1984; 67:121–30.

    PubMed  CAS  Google Scholar 

  50. Oreopoulos DG, Crassweller P, Katirtzoglou A, Ogilve R, Zellerman G, Rodella H, Vas SL. Amino acids as an osmotic agent (instead of glucose) in continuous ambulatory peritoneal dialysis. In: Legrain M (ed), Continuous ambulatory peritoneal dialysis. Amsterdam, Excerpta Medica 1980; pp 335–40.

    Google Scholar 

  51. Williams PF, Marliss EB, Anderson GH, Oren A, Stein AN, Khanna R, Petitt J, Brandes L, Rodella H, Mupas L, Dombros N, Oreopoulos DG. Amino acid absorption following intraperitoneal administration in CAPD patients.Perit Dial Bull 1982; 2: 124–30.

    Google Scholar 

  52. JirkaJ, Kotková E. Peritoneal dialysis by iso-oncoticdextran solution in anaesthestised dogs. Intra-peritoneal fluid volume and protein concentration in theirrigation fluid. Proc EDTA 1967; 4: 141–5.

    Google Scholar 

  53. Gjessing J. The use of dextran as a dialysing fluid in peritoneal dialysis. Acta Med Scand 1969; 185: 237–9.

    Article  PubMed  CAS  Google Scholar 

  54. Twardowski ZJ, Moore HL, McGary TJ, Poskuta M, Stathakis C, Hirszel P. Polymers as osmotic agents for peritoneal dialysis. Perit Dial Bull 1984; 4(Suppl 3):S125–31.

    Google Scholar 

  55. Twardowski ZJ, Khanna R, Nolph KD. Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron 1986;42: 93–101.

    Article  PubMed  CAS  Google Scholar 

  56. Mistry CD, Mallick NP, Gokal R. Ultrafiltration with an isosmotic solution during long peritoneal dialysisexchanges. Lancet 1987; ii: 178–82.

    Article  Google Scholar 

  57. Mistry CD, Gokal R. Can ultrafiltration occur with a hyosmolar solution in peritoneal dialysis? The role for colloid osmosis. Clin Sci 1993; 85: 495–500.

    PubMed  CAS  Google Scholar 

  58. Mistry CD, Gokal R. New osmotic agents for peritoneal dialysis:where we are and where we’re going. Sem Dial 1991; 4: 9–12.

    Article  Google Scholar 

  59. Henderson LW. Peritoneal ultrafiltration dialysis: senhanced urea transfer using hypertonic peritoneal dialysis fluid.J Clin Invest 1966; 45: 950–5.

    Article  PubMed  CAS  Google Scholar 

  60. Henderson LW, Nolph KD. Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 1969; 48: 992–1001.

    Article  PubMed  CAS  Google Scholar 

  61. Maher JF, Bennett RR, Hirzsel P, Chakrabarti E. The mechanism of dextrose-enhanced peritoneal mass transport rates.Kidney Int 1985; 28: 16–20.

    Article  PubMed  CAS  Google Scholar 

  62. Patlak CS, Goldstein DA, Hoffman JF. The flow of solute andsolvent across a two-membrane system. J Theoret Biol 1963; 5:426–42.

    Article  CAS  Google Scholar 

  63. BreslerEH, Groome LJ. On equations for combinedconvective and diffusive transport of neutral solute across porous membranes.Am J Physiol 1981; 241: F469–76.

    PubMed  CAS  Google Scholar 

  64. NolphKD, Hano JE,TeschanPE. Peritoneal sodium transport duringhypertonic peritoneal dialysis. Ann Intern Med 1969; 70: 931–41.

    PubMed  CAS  Google Scholar 

  65. BrownST, Ahearn DJ,NolphKD. Potassium removal with peritonealdialysis. Kidney Int 1973; 4: 647–9.

    Article  Google Scholar 

  66. Rubin J, Klein E, Bower JD. Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis. ASAIO J 1982; 5: 9–15.

    Google Scholar 

  67. Rubin J, Jones Q, Andrew M. An analysis of ultrafiltration during acute peritoneal dialysis in rats. Am J Med Sci 1989; 298:383–9.

    Article  PubMed  CAS  Google Scholar 

  68. Park MS, Heimbürger O, Waniewski J, Werynski A, Lindholm B, Berström J. Observed netsieving coefficient in experimental peritoneal dialysis in rat. [Abstract]. Perit Dial Int 1993; 13 (Suppl 1): S14.

    Google Scholar 

  69. Leypoldt JK. Determining ultafiltration properties of the peritoneum. ASAIO Trans 1990; 36: 60–6.

    Article  PubMed  CAS  Google Scholar 

  70. Aune S. Transperitoneal exchange. III. The influence of transperitoneal fluid flux on the peritoneal plasma clearanceof serum albumin in rabbits. Scand J Gastroent 1970; 5: 161–8.

    PubMed  CAS  Google Scholar 

  71. Bell JL, Leypoldt JK, Frigon RP, Henderson LW. Hydraulically-inducedconvective solute transport across the rabbit peritoneum.Kidney Int 1990; 38: 19–27.

    Article  PubMed  CAS  Google Scholar 

  72. Henriksen JH, Lassen NA, Parving H-H, Winkler K. Filtration as the main transport mechanism of protein exchange between plasma and the peritoneal cavity in hepatic cirrhosis. Scan J Clin Lab Invest 1980; 40:503–13.

    Article  CAS  Google Scholar 

  73. Hoefs JC. Serum protein c and portal pressure determine the ascitic fluid protein concentration in patients with chronic liver disease. J Lab Clin Med 1983; 102:260–73.

    PubMed  CAS  Google Scholar 

  74. Taylor AE, Granger DN. Exchange of macromolecules across the microcirculation. In: Renkin EM, Michel CC (eds),Handbook of physiology, section 2: thecardiovascular system, volume IV, Bethesda, AmericanPhysiological Society 1984; pp 467–520.

    Google Scholar 

  75. Goresky CA, Groom AC. Microcirculatory events in the liver and thespleen. In: Renkin EM, Michel CC (eds), Handbook of physiology, section 2: the cardiovascular system, volume IV, Bethesda, American Physiological Society 1984; pp 689–780.

    Google Scholar 

  76. Chen TW, Khanna R, Moore H, Twardowski ZJ, Nolph KD. Sieving and reflection coefficients for sodium salts and glucose during peritoneal dialysis in rats. J AmSoc Nephrol 1991; 2: 1091–100.

    Google Scholar 

  77. Babb AL, Johansen PJ, Strand MJ, Tenkhoff H, Scribner BH. Bidirectional permeability of the human peritoneumto middle molecules. Proc EDTA 1973; 10: 247–61.

    CAS  Google Scholar 

  78. Randerson DH, Farrell PC. Mass transfer properties ofthe human peritoneum. ASAIO J 1980; 3: 140–6.

    Google Scholar 

  79. Leypoldt JK, Parker HR, Frigon RP, Henderson LW.Molecular size dependence of peritoneal transport. J Lab Clin Med 1987; 110:207–16.

    PubMed  CAS  Google Scholar 

  80. WaniewskiJ, Werynski A, HeimbürgerO, Lindholm B. A comparativeanalysis of mass transport models in peritoneal dialysis. ASAIO Trans 1991; 37: 65–75.

    PubMed  CAS  Google Scholar 

  81. WaniewskiJ, Werynski A, HeimbürgerO, Lindholm B. Simple membrane models forperitoneal dialysis. Evaluation of diffusive and convective solutetransport ASAIO J 1992; 38: 788–96.

    CAS  Google Scholar 

  82. Sorenson HW. Parameter estimation. New York, Marcel Dekker1980.

    Google Scholar 

  83. Draper NR, Smith H. Applied regression analysis, 2nd edition. New York, John Wiley & Sons 1981.

    Google Scholar 

  84. Garfinkel D, Fegley KA. Fitting physiological models to data. Am J Physiol 1984; 246: R641–50.

    PubMed  CAS  Google Scholar 

  85. Nakanishi T, Tanaka Y, Fujii M, Fukuhara Y, Orita Y. Nonequilibrium thermodynamics of glucose transport incontinuous ambulatory peritoneal dialysis.In: Maekawa M, Kishimoto T, Nolph KD, Moncrief JW (eds), Machine freedialysis for patient convenience: the fourthISAO official satellite symposium onCAPD, Cleveland, ISAO Press 1984; pp 39–44.

    Google Scholar 

  86. Leypoldt JK. Accuracy of peritoneal membrane solute reflection coefficients. Blood Purif 1992; 10: 254–61.

    Article  Google Scholar 

  87. DiStefanoIII JJ, Landaw EM. Multiexponential,multicompartmental, and noncompartmental modeling. I. Methodological limitations and physiological interpretations. Am J Physiol 1984;246: R651–64.

    Google Scholar 

  88. LandawEM, DiStefano III JJ. Multiexponential,multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. Am JPhysiol 1984; 246: R665–77.

    CAS  Google Scholar 

  89. Morgenstern BZ, Pyle WK, Gruskin AB, Kaiser BA, Perlman SA, Polinsky MS, Baluarte HJ. Convectivecharacteristics of pediatric peritoneal dialysis. PeritDial Bull 1984; 4 (Suppl 3): S155–8.

    Google Scholar 

  90. WaniewskiJ, Werynski A, HeimbürgerO, Berström J, Lindholm B. Diffusive and convective characteristics of bidirectional glucose transport in peritonealdialysis. [Abstract]. Artif Organs 1991; 15: 332.

    Google Scholar 

  91. Pust AH, Leypoldt JK, Frigon RP, Henderson LW. Peritonealdialysate volume determined by indi catordilution measurements. Kidney Int 1988; 33: 64–70.

    Article  PubMed  CAS  Google Scholar 

  92. Hallett MD, Lysaght MJ, Farrell PC. The role of lymphaticdrainage in peritoneal mass transfer. Artif Organs 1989; 13: 28–34.

    Article  PubMed  CAS  Google Scholar 

  93. HeimbürgerO,Waniewski J, Werynski A, TranHl Aus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity.Kidney Int 1990; 38: 495–506.

    Article  PubMed  Google Scholar 

  94. Leypoldt JK, Pust AH, Frigon RP, Henderson LW. Dialysate volume measurements required for determiningperitoneal solute transport. Kidney Int 1988; 34: 254–61.

    Article  PubMed  CAS  Google Scholar 

  95. WaniewskiJ, HeimbürgerO,Werynski A, Lindholm B. Aqueous soluteconcentrations and evaluation of mass transport coefficients in peritonealdialysis. Nephrol Dial Transplant 1992; 7: 50–6.

    PubMed  CAS  Google Scholar 

  96. LeypoldtJK, Blindauer KM. Peritoneal solvent dragreflection coefficients are within the physiological range. Blood Purif (in press).

    Google Scholar 

  97. Popovich RP, Moncrief JW, Pyle WK. Transport kinetics. In: Nolph KD (ed), Peritoneal dialysis, 3rd edition. Dordrecht, Kluwer Academic 1989; pp 96–116.

    Chapter  Google Scholar 

  98. Popovich RP, Pyle WK, Bomar JB, Moncrief JW. Peritoneal dialysis. In: Villarroel F, Dedrick RL (eds), Chronicreplacement of kidney function, New York, American Institute of ChemicalEngineers 1979; pp 31–45.

    Google Scholar 

  99. Smeby LC, Wideröe T-E, Jörstad S. Individualdifferences in water transport during continuous peritoneal dialysis.ASAIO J 1981; 4: 17–27.

    Google Scholar 

  100. Smeby LC, Wideröe T-E, Mjaaland S, Dahl K. Changes inultrafiltration and solute transport duringCAPD. In: Maher JF, Winchester JF (eds), Frontiers in peritoneal dialysis. NewYork, Field, Rich and Associates 1986; pp 68–74.

    Google Scholar 

  101. Jaffrin MY. Odell RA, Farrell PC. A model of ultrafiltrationand glucose mass transfer kinetics inperitoneal dialysis. Artif Organs 1987; 11: 198– 207.

    Article  PubMed  CAS  Google Scholar 

  102. VoneshEF, Lysaght MJ, Moran J, Farrell P. Kineticmodeling as a prescription aid in peritoneal dialysis. Blood Purif 1991;9: 246–70.

    Article  PubMed  CAS  Google Scholar 

  103. Vonesh EF, Rippe B. Net fluid absorption under membrane transport models of peritonealdialysis. BloodPurif 1992; 10: 209–26.

    CAS  Google Scholar 

  104. Rippe B, Perry MA, Granger DN.Permselectivity of the peritoneal membrane. Microvasc Res 1985; 29: 89–102.

    Article  PubMed  CAS  Google Scholar 

  105. CroneC, Levitt DG. Capillary permeability to small solutes. In: Renkin EM, Michel CC(Eds), Handbook of physiology, section 2:the cardiovascular system, volumeIV, Bethesda, American PhysiologicalSociety 1984; pp 411–66.

    Google Scholar 

  106. Katchalsky A, Curran PF. Nonequilibrium thermodynamicsin biophysics. Cambridge, Harvard University Press 1965; pp 113–32.

    Google Scholar 

  107. Leypoldt JK. Interpreting peritoneal membrane osmotic reflection coefficients using a distributed model of peritoneal transport. Adv Perit Dial 1993; 9: 3–7.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leypoldt, J.K., Mistry, C.D. (1994). Ultrafiltration in peritoneal dialysis. In: Gokal, R., Nolph, K.D. (eds) The Textbook of Peritoneal Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0814-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0814-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4349-6

  • Online ISBN: 978-94-011-0814-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics