Skip to main content

Anti-host-defense systems are elaborated by plant pathogenic bacteria

  • Chapter
Molecular Mechanisms of Bacterial Virulence

Part of the book series: Developments in Plant Pathology ((DIPP,volume 3))

Abstract

Plant pathogenic bacteria possess sophisticated mechanisms to help evade host defenses. These evasive mechanisms are highly evolved and conserved. Distinctive cell surface components are elaborated to prevent recognition by the host defense system that would result in the hypersensitivity reaction (HR) if the bacterial cell is recognized. It has been long viewed that the HR is a host-defense response. Since there are many different compounds that cause HR, it is plausible that the detection system of the host is non-specific and equipped with an “universal receptor” or “universal detector”. It is also plausible that the compatible plant pathogenic bacteria elaborate a compound that suppresses HR. The hrpX gene of Xanthomonas campestris pathovars and X. oryzae confer an anti-defense system since that loss of this gene results in HR in the compatible host. Likewise, Agrobacterium tumefaciens and A. rhizogenes produce substances that suppress HR in a wide range of plants. Tn5 insertional mutants have revealed the presence of a chromosomal locus involved in this suppression. These findings strongly suggest that there are mechanisms operating that suppress defense responses in the plant and that evade triggering majors defense responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

HR:

Hypersensitive Reaction

References

  • Azad H R, Kado C I (1984) Relation of tobacco hypersensitivity to pathogenicity of Erwinia rubrifaciens. Phytopathology 74: 61–64.

    Article  Google Scholar 

  • Darvill A G, Albersheim P (1984) Phytoalexins and their elicitors: a defense against microbial infection in plants. Annu. Rev. Plant Physiol. 35: 243–293.

    Article  CAS  Google Scholar 

  • DeCleene M, De Ley J (1977) The host range of crown gall. Botan. Rev. 42: 389–466.

    Article  Google Scholar 

  • Dixon R A (1986) The phytoalexin response: elicitation, signalling and the control of host gene expression. Biol. Rev. 61: 239–291.

    Article  CAS  Google Scholar 

  • Fenselau S, Balbo I, Bonas U (1992) Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals. Mol. Plant-Microbe Interact. 5: 390–396.

    Article  PubMed  CAS  Google Scholar 

  • Gardner J M, Kado CI (1976) Polygalacturonic acid trans-eliminase in the osmotic shock fluid of Erwinia rubrifaciens: characterization of the purified enzyme and its effect on plant cells. J. Bacteriol 127: 451–460.

    PubMed  CAS  Google Scholar 

  • Gough C L, Genin S, Zischek C, Boucher C A (1992) hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria. Mol. Plant-Microbe Interact. 5: 384–389.

    Article  PubMed  CAS  Google Scholar 

  • Jakobek J L, Lindgren P B (1993) Generalized induction of defense responses in bean is not correlated with the induction of the hypersensitive reaction. Plant Cell 5: 49–56.

    PubMed  CAS  Google Scholar 

  • Jakobek J L, Smith J A, Lindgren P B (1993) Suppression of bean defense responses by Pseudomonas syringae. Plant Cell 5: 57–63.

    PubMed  CAS  Google Scholar 

  • Kamdar H V, Kamoun S, Kado CI (1993) Restoration of pathogenicity of avirulent Xanthomonas oryzae pv. oryzae and X. campestris pathovars by reciprocal complementation with the hrpXo and hrpXc genes and identification of HrpX function by sequence analysis. J. Bacteriol. 175: 2017–2025.

    PubMed  CAS  Google Scholar 

  • Kamoun S, Kado C I (1990) A plant-inducible gene of Xanthomonas campestris pv. campestris encodes an exocellular component required for growth in the host and hypersensitivity on nonhosts. J. Bacteriol. 172: 5165–5172.

    PubMed  CAS  Google Scholar 

  • Kamoun S, Kamdar H V, Tola E, Kado CI (1992) Incompatible interactions between crucifers and Xanthomonas campestris involve a vascular hypersensitive response: role of the hrpX locus. Mol. Plant-Microbe Interact. 5: 22–33.

    Article  CAS  Google Scholar 

  • Keen N T (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24: 447–463.

    Article  PubMed  CAS  Google Scholar 

  • Keen N T, Holiday M J (1982) Recognition of bacterial pathogens by plants. In: Mount M S, Lacy G C (ed) Phytopathogenic Prokaryotes, Vol II, p. 179–221, Academic Press, New York.

    Chapter  Google Scholar 

  • Keen N T, Staskawicz B (1988) Host range determinants in plant pathogens and symbionts. Annu. Rev. Microbiol. 42: 421–440.

    Article  Google Scholar 

  • Klement Z, Goodman R N (1967) The hypersensitive reaction to infection by bacterial plant pathogens. Annu Rev Phytopathol 5: 17–44.

    Article  Google Scholar 

  • Laby R J, Beer S V (1992) Hybridization and functional complementation of the hrp gene cluster from Erwinia amylovora strain Ea321 with DNA of other bacteria. Mol. Plant-Microbe Interact. 5:412–419.

    Article  CAS  Google Scholar 

  • Lamb C J, Lawton M A, Dron M, Dixon R A (1989) Signals and transduction mechnisms for activation of plant defenses against microbial attack. Cell 56: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Pugsley A P (1993) The complete general secretory pathway in Gram-negative bacteria. Microbiol. Revs. 57: 50–108.

    CAS  Google Scholar 

  • Ralton J E, Howlett B J, Clarke A E (1988) Receptors in host-pathogen interactions, In: Carbohydrate-Protein Interaction, Clarke A E, Wilson I A (eds.), Springer-Verlag, Berlin/New York.

    Google Scholar 

  • Robinette D, Matthysse A G (1990) Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitivity response elicited by Pseudomonas syringae pv. phaseolicola. J. Bacteriol. 172: 5742–5749.

    PubMed  CAS  Google Scholar 

  • Salmond G P C, Reeves P J (1993) Membrane traffic wardens and proteins secretion in Gram-negative bacteria. TIBS 18: 7–12.

    PubMed  CAS  Google Scholar 

  • Staskawicz B J, Dahlbeck D, Keen N T (1984) Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility of Glycine max (L.) Merr. Proc. Natl. Acad. Sci. USA 81: 6024–6028.

    Article  CAS  Google Scholar 

  • Wei Z-M, Laby R J, Zumoff C H, Bauer D W, He S-Y, Collmer A, Beer S V (1992) Harpin, elicitor of the hypersensitive response produced by.the plant pathogen Erwinia amylovora. Science257: 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Palm C J, Brooks B, Kosuge T (1985) Nucleotide sequences of the Pseudomonas savastanoiindoleatic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc. Natl. Acad. Sci. USA 82: 6522–6526.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky M, Lowe B, Montoya A, Ribin R, Krul W, Gordon M, Nester E (1985) Molecular and genetic factors controlling host range in Agrobacterium tumefaciens. Mol Gen Genet 201: 237–246.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kado, C.I. (1994). Anti-host-defense systems are elaborated by plant pathogenic bacteria. In: Kado, C.I., Crosa, J.H. (eds) Molecular Mechanisms of Bacterial Virulence. Developments in Plant Pathology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0746-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0746-4_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4322-9

  • Online ISBN: 978-94-011-0746-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics