Skip to main content

Fiber orientation prediction in injection molding

  • Chapter
Polypropylene Structure, blends and Composites

Abstract

Short-fiber-reinforced polypropylene (FRPP) is used as a structural material because of its high strength and stiffness to weight and cost. It can be easily processed by injection molding, which is a common method to make products from thermoplastics. Since the properties of molded parts of FRPP are strongly affected by fiber orientation, it is important to control fiber orientation appropriately by design of molds and parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bright, P. F., Crowson, P. J. and Folkes, M. J. (1978) Journal of Materials Science, 13, 2497–506.

    Article  CAS  Google Scholar 

  2. Bright, P. F. and Darlington, M. W. (1981) Plastics and Rubber Processing and Applications, 1, 139–47.

    CAS  Google Scholar 

  3. Oyanagi, Y., Yamaguchi, Y., Kitagawa, M. et al. (1981) Kobunshi Ronbunshu, 38, 285–90.

    Article  Google Scholar 

  4. Sanou, M., Chung, B. and Cohen, C. (1985) Polymer Engineering and Science, 25, 1008–16.

    Article  CAS  Google Scholar 

  5. Kamal, M. R., Song, L. and Singh, P. (1986) Polymer Composites, 7, 323–9.

    Article  CAS  Google Scholar 

  6. Lockett, F. L. (1980) Plastics and Rubber Processing, 5, 85–94.

    Google Scholar 

  7. Kenig, S. (1986) Polymer Composites, 1, 50–5.

    Article  Google Scholar 

  8. Wang, K. K., Shen, S. F., Hieber, C. A. et al. (1983) Computer-aided design and fabrication of molds and computer control of injection molding, in 10th Conference on Production Research and Technology, pp. 199–208.

    Google Scholar 

  9. Schacht, Th., Maier, U., Kretzschmar, K., and Schmidt, Th. (1985) Advances in Polymer Technology, 5, 99–137.

    Article  CAS  Google Scholar 

  10. Takahashi, H. and Matsuoka, T. (1986) Techno Japan, 2, 38–45.

    Google Scholar 

  11. Givler, R. C. (1981) Numerically predicted fiber orientations in dilute suspensions, Technical Report CCM81–04, Center for Composite Materials, University of Delaware, Newark, Delaware.

    Google Scholar 

  12. Jeffery, G. B. (1922) Proceedings of the Royal Society, A102, 161–79.

    Google Scholar 

  13. Hirai, T., Katayama, T., Hirai, M., and Yoneda, M. (1985) Zairyou, 34, 256–61.

    Google Scholar 

  14. Chaffey, C. E., Takano, M. and Mason, S. G. (1965) Canadian Journal of Physics, 43, 1269–87.

    Article  Google Scholar 

  15. Goldsmith, H. L. and Mason, S. G. The microrheology of dispersions, in Rheology, Vol. 4, Theory and Application (ed. F. R. Eirich), Academic Press, New York, Chapter 2, p. 85.

    Google Scholar 

  16. Givler, R. C., Crochet, M. J., and Pipes, R. B. (1983) Journal of Composite Materials, 17, 330–43.

    Article  Google Scholar 

  17. Givler, R. C. (1983) ASME Production Engineering Division, 10, 99–103.

    Google Scholar 

  18. Gillespie Jr, J. W., Vanderschuren, J. A., and Pipes, R. B. (1985) Polymer Composites, 6, 82–6.

    Article  CAS  Google Scholar 

  19. Vincent, M. and Agassant, J. F. (1985) Rheologica Acta, 24, 603–10.

    Article  CAS  Google Scholar 

  20. Folgar, F. and Tucker III, C. L. (1984) Journal of Reinforced Plastics and Composites, 3, 98–119.

    Article  CAS  Google Scholar 

  21. Jackson, W. C., Advani, S. G., and Tucker III, C. L. (1986) Journal of Composite Materials, 20, 539–57.

    Article  CAS  Google Scholar 

  22. Matsuoka, T., Takabatake, J., Inoue, Y., and Takahashi, H. (1990) Polymer Engineering and Science, 30, 957–66.

    Article  CAS  Google Scholar 

  23. Matsuoka, T., Takabatake, J., Inoue, Y., and Takahashi, H. (1991) Kobunshi Ronbunshu, 48, 137–44.

    Article  CAS  Google Scholar 

  24. Broyer, E, Gutfinger, C. and Tadmor, Z. (1975) AIChE Journal, 21, (1988) 198–200.

    Article  CAS  Google Scholar 

  25. Fischer, G. and Eyerer, P. (1988) Polymer Composites, 9, 297–304.

    Article  CAS  Google Scholar 

  26. Yalvaç, S. and Tatistcheff, E. M. (1989) Journal of Reinforced Plastics and Composites, 8, 472–83.

    Article  Google Scholar 

  27. Matsuoka, T., Inoue, Y., and Takabatake, J. (1991) Kobunshi Ronbunshu, 48, 151–7.

    Article  CAS  Google Scholar 

  28. Lewis, T. B. and Nielsen, L. E. (1970) Journal of Applied Polymer Science 14, 1449–71.

    Article  CAS  Google Scholar 

  29. Schapery, R. A. (1968) Journal of Composites Materials, 2, 380–404.

    Article  Google Scholar 

  30. Matsuoka, T., Takabatake, J., Koiwai, A., et al. (1991) Polymer Engineering and Science, 31, 1043–50.

    Article  CAS  Google Scholar 

  31. Matsuoka, T., Koiwai, A., Takabatake, J., and Takahashi, H. (1991) Transactions of the Japan Society of Mechanical Engineers, 57, 1865–70.

    Article  Google Scholar 

  32. Broyer, E., Gutfinger, C., and Tadmor, Z. (1975) Transactions of the Society of Rheology, 19, 423–44.

    Article  Google Scholar 

  33. Altan, M. C., Subbiah, S, Güçeri, S. I., and Pipes, R. B. (1990) Polymer Engineering and Science, 30, 848–59.

    Article  CAS  Google Scholar 

  34. Advani, S. G. and Tucker III, C. L., (1987) Journal of Rheology, 31, 751–84.

    Article  CAS  Google Scholar 

  35. Crowson, R. J., Folkes, M. J., and Bright, P. F. (1980) Polymer Engineering and Science, 20, 925–33.

    Article  CAS  Google Scholar 

  36. Crowson, R. J. and Folkes, M. J. (1980) Polymer Engineering and Science, 20, 934–40.

    Article  CAS  Google Scholar 

  37. Altan, M. C. (1989) Rheology of fiber suspensions and fiber orientation analysis in flow processes, Technical Report CCM89–24, Center for Composite Materials, University of Delaware, Newark, Delaware.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Matsuoka, T. (1995). Fiber orientation prediction in injection molding. In: Karger-Kocsis, J. (eds) Polypropylene Structure, blends and Composites. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0523-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0523-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4233-8

  • Online ISBN: 978-94-011-0523-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics