Skip to main content

Hormones as Regulators of Water Balance

  • Chapter
Plant Hormones

Abstract

The development of strategies which enable growth to continue without excessive consumption of limited water resources has played a vital part in the evolution of plants which can survive in terrestrial environments. Research over the last two decades has established a clear role for plant hormones in governing the water economy of plants. By influencing stomatal behaviour they can control the expenditure of water, and by regulating the growth and activities of roots, they can exert some control over the uptake of water. Our knowledge of the role of hormones in relation to stomatal functioning is now progressing rapidly and it is appropriate to devote most of this chapter to this topic. Studies of roots have not progressed so rapidly, but nevertheless we have begun to recognise an important role for the roots in regulating activities in the shoot, to provide an integrated strategy for controlling the water balance of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, E.F., Trewavas, A.J. (1987) The role of calcium in metabolic control. In: The Biochemistry of Plants. A Comprehensive Treatise (vol. 12), pp 117–149, Stumpf, P.K., Conn, E.E., eds. Academic Press, New York.

    Google Scholar 

  2. Beardsell, M.F., Cohen, D. (1975) Relationship between leaf water status, abscisic acid levels and stomatal resistance in maize and sorghum. Plant Physiol. 56, 208–212.

    Article  Google Scholar 

  3. Berridge, M.J., Irvine, R.F. (1989) Inositol phosphates and cell signalling. Nature 341, 197–205.

    Article  CAS  PubMed  Google Scholar 

  4. Blackman, P.G., Davies, W.J. (1983) The effects of cytokinins and ABA on stomatal behaviour of maize and Commelina. J. Exp. Bot. 34,1619–1626.

    Article  CAS  Google Scholar 

  5. Blackman, P.G., Davies, W.J. (1984) Modification of the CO2 responses of maize stomata by abscisic acid and by naturally occurring and synthetic cytokinins. J. Exp. Bot. 35, 174–179.

    Article  CAS  Google Scholar 

  6. Blatt, M.R., Thiel, G. (1993) Hormonal control of ion channel gating. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 543–567.

    Article  CAS  Google Scholar 

  7. Boysen Jensen, P. (1936) Growth Hormones in Plants. McGraw-Hill Book Co., New York.

    Google Scholar 

  8. Chaves, M.M. (1991) Effects of water deficits on carbon assimilation. J. Exp. Bot. 42, 1–16.

    Article  CAS  Google Scholar 

  9. Collins, J.C., Kerrigan, A.P. (1983) Hormonal control of ion movements in the plant root. In: Ion Transport in Plants, pp 589–594, Anderson, W.P., ed. Academic Press, London.

    Google Scholar 

  10. Cornish, K., Zeevaart, J.A.D. (1985) Abscisic acid accumulation by roots of Xanthium strumarium L. and Lycopersicon esculentum Mill in relation to water stress. Plant Physiol. 79, 653–658.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Creelman, R.A., Mason, H.S., Bensen, R.J., Boyer, J.S., Mullet, J.E. (1990) Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings. Analysis of growth, sugar accumulation, and gene expression. Plant Physiol. 92, 205–214.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cummins, W.R., Kende, H., Raschke, K. (1971) Specificity and reversibility of the rapid stomatal response to abscisic acid. Plants 99, 347–351.

    Article  CAS  Google Scholar 

  13. Davies, W.J., Zhang, J. (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 55–76.

    Article  Google Scholar 

  14. De Silva, D.L.R., Hetherington, A.M., Mansfield, T.A. (1985) Synergism between calcium ions and abscisic acid in preventing stomatal opening. New Phytol. 100, 473–482.

    Article  CAS  Google Scholar 

  15. Durley, R.C., Kannangara, T., Seetharama, M., Simpson, G.M. (1983) Drought resistance of Sorghum bicolor. 5. Genotypic differences in the concentrations of free and conjugated abscisic acid, phaseic acid and indole-3-acetic acid in leaves of field grown drought stressed plants. Can. J. Plant Sci. 63, 131–145.

    CAS  Google Scholar 

  16. Einspahr, K.J., Thompson, G.A., Jr. (1990) Transmembrane signalling via phosphatidylinositol 4,5-bisphosphate hydrolysis in plants. Plant Physiol. 93, 361–366.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Evans, D.E., Briars, S-A., Williams, L.A. (1991) Active calcium transport by plant cell membranes. J. Exp. Bot. 42, 285–303.

    Article  CAS  Google Scholar 

  18. Gehring, C.A., Williams, D.A., Parish, R.W. (1990) Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc. Natl. Acad. Sci. USA 87, 9645–9649.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gilroy, S., Read, N.D., Trewavas, A.J. (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 343, 769–771.

    Article  Google Scholar 

  20. Gilroy, S., Fricker, M., Read, N.D., Trewavas, A.J. (1991) Role of calcium in signal transduction of Commelina guard cells. The Plant Cell 3, 333–344.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Glinka, Z., Reinhold, L. (1972) Induced changes in the permeability of plant cells to water. Plant Physiol. 49, 602–606.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gowing, D.J.C., Davies, W.J., Jones, H.G. (1990) A positive root-sourced signal as an indicator of soil drying in apple, Malus domestica Borkh. J. Exp. Bot. 41, 1535–1540.

    Article  Google Scholar 

  23. Hartung, W. (1983) The site of action of abscisic acid at the guard cell plasmalemma of Valerianella locusta. Plant, Cell & Environment 6, 427–428.

    Article  CAS  Google Scholar 

  24. Hartung, W., Davies, W.J. (1991) Drought-induced changes in physiology and ABA. In: Abscisic Acid: Physiology and Biochemistry, pp 63–79, Davies, W.J., Jones, H.G., eds. BIOS Scientific Publishers, Oxford.

    Google Scholar 

  25. Hepler, P.K., Wayne, R.O. (1985) Calcium and plant development. Annu. Rev. Plant Physiol. 35, 397–439.

    Article  Google Scholar 

  26. Hetherington, A.M., Battey, N.H., Millner, P.A. (1990) Protein kinases. In: Methods in Plant Biochemistry, pp 371–384. Lea, P.J. ed. Academic Press, London.

    Google Scholar 

  27. Hetherington, A.M., Graziana, A., Mazars, C., Thuleau, P., Ranjeva, R. (1992) The biochemistry and pharmacology of plasma-membrane calcium channels in plants. Phil Trans. R. Soc. Lond. B 338, 91–96.

    Article  CAS  Google Scholar 

  28. Hetherington, A.M., Quatrano, R.S. (1991) Mechanisms of action of abscisic acid at the cellular level. New Phytol. 119, 9–32.

    Article  CAS  Google Scholar 

  29. Hornberg, C., Weiler, E.W. (1984) High affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310, 321–324.

    Article  CAS  Google Scholar 

  30. Incoll, L.D., Whitelam, G.C. (1977) The effect of kinetin on stomata of the grass Anthephora pubescens. Planta 137, 243–245.

    Article  CAS  PubMed  Google Scholar 

  31. Incoll, L.D., Jewer, P.C. (1985) Cytokinins and stomata. In:Stomatal Function, Zeiger, E., Farquhar, G.D., Cowan, I.R., eds. Stanford University Press, Palo Alto, CA.

    Google Scholar 

  32. Innes, P., Blackwell, R.D., Quarrie, S.A. (1984) Some effects of genetic variation in drought-induced abscisic acid accumulation on the yield and water use of spring wheat. J. Agric. Sci. 102, 341–351.

    Article  CAS  Google Scholar 

  33. Irving, H.R., Gehring, C.A., Parish, R.W. (1992) Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc. Natl. Acad. Sci. USA 89, 1790–1794.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Jones, H.G. (1980) Interaction and integration of adaptive responses to water stress: the implications of an unpredictable environment. In: Adaptation of Plants to Water and High Temperature Stress, pp. 353–365, Turner, N.C., Kramer, P.J., eds. John Wiley & Sons, London.

    Google Scholar 

  35. Jones, H.G. (1983) Plants and Microclimate. Cambridge University Press.

    Google Scholar 

  36. MacRobbie, E.A.C. (1981) Effects of ABA in ‘isolated’ guard cells of Commelina communis L. J. Exp. Bot. 32, 563–572.

    Article  CAS  Google Scholar 

  37. MacRobbie, E.A.C. (1989) Calcium influx at the plasmalemma of isolated guard cells of Commelina communis. Effects of abscisic acid. Planta 178, 231–241.

    Article  CAS  PubMed  Google Scholar 

  38. MacRobbie, E.A.C. (1990) Calcium-dependent and calcium-independent events in the initiation of stomatal closure by abscisic acid. Proc. R. Soc. Lond. B 241, 214–219.

    Article  CAS  Google Scholar 

  39. MacRobbie, E.A.C. (1992) Calcium and ABA-induced stomatal closure. Phil. Trans. R. Soc. Lond. B 338, 5–18.

    Article  CAS  Google Scholar 

  40. Malek, T., Baker, D.A. (1978) Effect of fusicoccin on proton co-transport of sugars in the phloem loading of Ricinus communis L. Plant Sci. Lett. 11, 233–39.

    Article  CAS  Google Scholar 

  41. Mansfield, T.A., Davies, W.J. (1985) Mechanisms for leaf control of gas exchange. BioScience 35, 158–164.

    Article  Google Scholar 

  42. Mansfield, T.A., Hetherington, A.M., Atkinson, C.J. (1990) Some current aspects of stomatal physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 55–75.

    Article  CAS  Google Scholar 

  43. McAinsh, M.R., Brownlee, C., Hetherington, A.M. (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca’ precedes stomatal closure. Nature, 343, 186–188.

    Article  CAS  Google Scholar 

  44. McAinsh, M.R., Brownlee, C., Hetherington, A.M. (1991) Partial inhibition of ABA-induced stomatal closure by calcium channel blockers. Proc. R. Soc. Lond. B 243, 195–01.

    Article  CAS  Google Scholar 

  45. McAinsh, M.R., Brownlee, C., Sarsag, M., Webb, A.R.R., Hetherington, A.M. (1991) Involvement of second messengers in the action of ABA. In: Abscisic acid: Physiology and Biochemistry, pp. 137–152. Davies, W.J., Jones, H.G. eds. BIOS Scientific Publishers, Oxford.

    Google Scholar 

  46. McAinsh, M.R., Brownlee, C., Hetherington, A.M. (1992) Visualizing changes in cytosolic-free Ca2+ during the response of stomatal guard cells to abscisic acid. The Plant Cell 4, 1113–1122.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Mittlehauser, C.G., van Steveninck, R.F.M. (1969) Stomata1 closure and inhibition of transpiration induced by RS-abscisic acid. Nature 221, 281–282.

    Article  Google Scholar 

  48. Pemadasa, M.A. (1982) Differential abaxial and adaxial stomatal responses to indole-3acetic acid in Commelina communis L. New Phytol. 90, 209–219.

    Article  CAS  Google Scholar 

  49. Poovaiah, B.W., Reddy, A.S.N. (1987) Calcium messenger systems in plants. CRC Critical Rev. Plant Sci. 6, 47–103.

    Article  CAS  Google Scholar 

  50. Poovaiah, B.W., Reddy, A.S.N. (1993) Calcium and signal transduction in plants. CRC Critical Rev. Plant Sci. 12, 185–211.

    Article  CAS  Google Scholar 

  51. Quarrie, S.A. (1982) Droopy: a wilty mutant of potato deficient in abscisic acid. Plant, Cell & Environment 5, 23–26.

    CAS  Google Scholar 

  52. Quarrie, S.A. (1991) Implications of genetic differences in ABA accumulation for crop production. In:Abscisic acid: Physiology and Biochemistry, pp. 137–152, Davies, W.J., Jones, H.G., eds. BIOS Scientific Publishers, Oxford.

    Google Scholar 

  53. Radin, J.W. (1984) Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol. 76, 392–394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Radin, J.W., Parker, L.L., Guinn, G. (1982) Water relations of cotton plants under nitrogen deficiency. V. Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid. Plant Physiol. 70, 1066–1070.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Raschke, K., Hedrich, R. (1985) Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves. Planta 163, 105–118.

    Article  CAS  PubMed  Google Scholar 

  56. Saab, I.N., Sharp, R.E., Pritchard, J., Voetberg, G.S. (1990) Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol. 93, 1329–1336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Saab, I.N., Sharp, R.E., Pritchard, J. (1992) Effects of inhibition of abscisic acid accumulation on the spatial distribution of elongation in the primary root and mesocotyl of maize at low water potentials. Plant Physiol. 99, 26–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Schroeder, J.I., Hagiwara, S. (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc. Natl. Acad. Sci. USA 87, 9305–9309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Schroeder, J.I., Hedrich, R. (1989) Involvement of ion channels and active transport in osmoregulation and signaling in higher plant cells. Trends Biochem. Sci. 14, 187–192.

    Article  CAS  PubMed  Google Scholar 

  60. Smith, G.N., Willmer, C.M. (1988) Effects of calcium and abscisic acid on volume changes of guard cell protoplasts of Commelina comurunis. J. Exp. Bot. 30, 1529–1539.

    Article  Google Scholar 

  61. Snaith, P.J., Mansfield, T.A (1982a) Stomatal sensitivity to abscisic acid: can it be defined? Plant, Cell & Environment 5, 309–311.

    Article  CAS  Google Scholar 

  62. Snaith, P.J., Mansfield, T.A. (1982b) Control of the CO2 responses of stomata by indol-3ylacetic acid and abscisic acid. J. Exp. Bot. 33, 360–365.

    Article  CAS  Google Scholar 

  63. Stillwell, W., Brengle, B., Hester, P., Wassail, S.R. (1989) Interaction of abscisic acid with phospholipid membranes. Biochemistry 28, 2798–2804.

    Article  CAS  Google Scholar 

  64. Tal, M., Nevo, Y. (1973) Abnormal stomatal behaviour and root resistance, and hormonal imbalance in three wilty mutants of tomato. Biochem. Genet. 8, 291–300.

    Article  CAS  PubMed  Google Scholar 

  65. Tamas, I.A., Schwartz, J.M., Hagin, J.W., Simmonds, R. (1974) Hormonal control of photosynthesis in isolated chloroplasts. In:Mechanisms of Regulation of Plant Growth, pp. 261–268, Bieleski, R.L., Ferguson, A.R., Cresswell, M.M., eds. Royal Society of New Zealand, Wellington.

    Google Scholar 

  66. Tardieu, F., Zhang, J., Katerji, N., Bethenod, O., Palmer, S., Davies, W.J. (1992) Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying. Plant, Cell & Environment 15, 193–197.

    Article  CAS  Google Scholar 

  67. Tsien, R.W., Tsien, R.Y. (1990) Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol. 6, 715–760.

    Article  CAS  PubMed  Google Scholar 

  68. Van Volkenburg, E., Davies, W.J. (1983) Inhibition of light-stimulated leaf expansion by abscisic acid. J. Exp. Bot. 34, 835–845.

    Article  Google Scholar 

  69. Wright, S.T.C. (1977) The relationship between leaf water potential and the levels of abscisic acid and ethylene in excised wheat leaves. Planta 134, 183–189.

    Article  CAS  PubMed  Google Scholar 

  70. Wright, S.T.C., Hiron, R.W.P. (1969) (+) abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature 224, 719–720.

    Article  CAS  Google Scholar 

  71. Zabadal, T.J. (1974) A water potential threshold for the increase of abscisic acid in leaves. Plant Physiol. 53, 125–127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Zhang, J., Davies, W.J. (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant, Cell & Environment 12, 73–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mansfield, T.A., McAinsh, M.R. (1995). Hormones as Regulators of Water Balance. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0473-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0473-9_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2985-5

  • Online ISBN: 978-94-011-0473-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics