Skip to main content

Auxin Transport

  • Chapter
Plant Hormones

Abstract

The concept of translocation of chemical messengers in higher plants was proposed in the nineteenth century by Charles Darwin. From experiments on the response of oat seedlings to light, Darwin suggested that the translocation of an unknown substance might regulate the phototropic response. The chemical messenger was later shown to be auxin, of which indole-3-acetic acid (IAA; Fig. 1, I) was found to be the predominant, naturally-occurring form. The polarity of auxin transport in cereal seedlings was established by the 1930s, and later found to be a widespread feature of shoot and root tissues. Excellent reviews of the historical development of auxin polar transport studies are available elsewhere (12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, A.C., Rubery, P.H. (1991) Calcium deficiency and auxin transport in Cucurbita pepo L. seedlings. Planta 183, 604–612.

    Article  CAS  PubMed  Google Scholar 

  2. Brunn, S.A., Muday, G.K., Haworth, P. (1992) Auxin transport and the interaction of phytotropins. Plant Physiol. 98, 101–107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bures, M.G., Black-Schaefer, C., Gardner, G. (1991) The discovery of novel auxin transport inhibitors by molecular modeling and three-dimensional pattern analysis. J. Comput.-aided Molec. Design 5, 323–334.

    Article  CAS  Google Scholar 

  4. Cooke, T.J., Racusen, R.H., Cohen, J.D. (1993) The role of auxin in plant embryogenesis. Plant Cell 5, 1494–1495.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Davies, P.J., Doro, J.A., Tarbox, A.W. (1976) The movement and physiological effect of indole-acetic acid following point applications to root tips of Zea mays. Physiol. Plant. 36, 333–337.

    CAS  Google Scholar 

  6. Davies, P.J., Mitchell, E.K. (1972) Transport of indoleacetic acid in intact roots of Phaseolus coccineus. Planta 105, 139–154.

    Article  CAS  PubMed  Google Scholar 

  7. Davies, P.J., Rubery, P.H. (1978) Components of auxin transport in stem segments of Pisum sativum L. Planta 142, 211–219.

    Article  CAS  PubMed  Google Scholar 

  8. Dela Fuente, R.K., Leopold, A.C. (1973) A role for calcium in auxin transport. Plant Physiol. 51, 845–847.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Donaldson, A.W., Muday, G.K. (1993) Auxin transport and root development in different plant species: Is there a correlation? Plant Physiol. 102(S), 323.

    Google Scholar 

  10. Evans, M.L. (1991) Gravitropism: Interaction of sensitivity, modulation, and effector redistribution. Plant Physiol. 95, 1–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Faulkner, I.J., Rubery, P.H. (1992) Flavonoids and flavonoid sulphates as probes of auxin-transport regulation in Cucurbitapepo hypocotyl segments and vesicles. Planta 186, 618–625.

    Article  CAS  PubMed  Google Scholar 

  12. Goldsmith, M.H.M. (1977) The polar transport of auxin. Ann. Rev. Plant Physiol. 28, 439–478.

    Article  CAS  Google Scholar 

  13. Harrison, M.A., Pickard, B.G. (1989) Auxin asymmetry during gravitropism by tomato hypocotyls. Plant Physiol. 89, 890–894.

    Article  Google Scholar 

  14. Hertel, R., Lomax, T.L., Briggs, W.R. (1983) Auxin transport in membrane vesicles from Cucurbita pepo L. Planta 157, 193–201.

    Article  CAS  PubMed  Google Scholar 

  15. Hicks, G.R., Rayle, D.L., Jones, A.M., Lomax, T.L. (1989) Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin. Proc. Natl. Acad. Sci. USA 86, 4948–4952.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hicks, G.R., Rice, M.S., Lomax, T.L. (1993) Characterization of auxin-binding proteins from zucchini plasma membrane. Planta 189, 83–90.

    Article  CAS  PubMed  Google Scholar 

  17. Hirsch, A.M., Jacobs, M. (1993) NPA binding activity in Rhizobium meliloti culture filtrates may be due to breakdown of luteolin, the NOD gene inducer. Plant Physiol. 102(S), 620.

    Google Scholar 

  18. Iino, M. (1991) Mediation of tropisms by lateral translocation of endogenous indole-3acetic acid in maize coleoptiles. Plant Cell Environ. 14, 279–286.

    Article  Google Scholar 

  19. Jacobi, A., Zettl, R., Palme, K., Werner, D. (1993) An auxin binding protein is localized in the symbiosome membrane. Z. Naturforsch. 48, 35–40.

    CAS  Google Scholar 

  20. Jacobs, M., Gilbert, S.F. (1983) Basal localization of the presumptive auxin transport carrier in pea stem cells. Science 220, 1297–1300.

    Article  CAS  PubMed  Google Scholar 

  21. Jacobs, M., Rubery, P.H. (1988) Naturally occurring auxin transport regulators. Science 241, 346–349.

    Article  CAS  PubMed  Google Scholar 

  22. Jacobs, M., Short, T.W. (1986) Further characterization of the presumptive auxin transport carrier using monoclonal antibodies. In: Plant Growth Substances 1985, pp. 218–226, Bopp, M., ed. Springer Verlag, Berlin

    Chapter  Google Scholar 

  23. Johnson, C.F., Morris, D.A. (1989) Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3y1-acetic acid in the intact pea (Pisum sativum L.). Planta 178, 242–248.

    Article  CAS  PubMed  Google Scholar 

  24. Jones, A.M. (1990) Location of transported auxin in etiolated maize shoots using 5azidoindole-3-acetic acid. Plant Physiol. 93, 1154–1161.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kaldeway, H. (1984) Transport and other modes of movement of hormones (mainly auxins). In: Hormonal Regulation of Development II, pp. 80–148, Scott,T.K., ed. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  26. Katekar, G.F., Geissler, A.E. (1977) Auxin transport inhibitors III. Chemical requirements of a class of auxin transport inhibitors. Plant Physiol. 60, 826–829.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Katekar, G.F., Geissler, A.E. (1989) The distribution of the receptor for 1-Nnaphthylphthalamic acid in different tissues of maize. Physiol. Plant. 76, 183–186.

    CAS  Google Scholar 

  28. Li, Y., Hagen, G., Guilfoyle, T.J. (1991) An auxin-responsive promoter is differentially induced by auxin gradients during tropisms. The Plant Cell 3, 1167–1175.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Lomax, T.L. (1986) Active auxin uptake by specific plasma membrane carriers. In: Plant Growth Substances 1985, pp. 209–213, Bopp, M., ed. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  30. Lomax, T.L., Hicks, G.R. (1992) Specific auxin-binding proteins in the plasma membrane: Receptors or transporters? Biochem. Soc. Trans. 20, 64–69.

    CAS  Google Scholar 

  31. Lomax, T.L., Mehlhorn, R.J., Briggs, W.R. (1985) Active auxin uptake by zucchini membrane vesicles: Quantitation using ESR volume and ApH determinations. Proc. Natl. Acad. Sci., USA 82, 6541–6545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lützelschwab, M., Asard, H., Ingold, U., Hertel, R. (1989) Heterogeneity of auxin-accumulating membrane vesicles from Cucurbita and Zea: A possible reflection of cell polarity. Planta 177, 304–311.

    Article  PubMed  Google Scholar 

  33. Meuwly, P., Pilet, P.-E. (1991) Local treatment with indole-3-acetic acid influences differential growth responses in Zea mays L. roots. Planta 185, 58–64.

    Article  CAS  PubMed  Google Scholar 

  34. Michalke, W. (1982) pH-shift dependent kinetics of NPA-binding in two particulate fractions from corn coleoptile homogenates. In: Plasmalemma and Tonoplast: Their Functions in the Plant Cell, pp. 129–135, Marme, D., Marre, E., Hertel, R., eds. Elsevier Biomedical Press, Berlin.

    Google Scholar 

  35. Michalke, W., Katekar, G.F., Geissler, A.E. (1992) Phytotropin-binding sites and auxin transport in Cucurbita pepo: Evidence for two recognition sites. Planta 187, 254–260.

    Article  CAS  PubMed  Google Scholar 

  36. Morris, D.A., Johnson, C.F. (1987) Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: Inhibition of polar auxin transport in intact plants and stem segments. Planta 172, 408–416.

    Article  CAS  PubMed  Google Scholar 

  37. Morris, D.A., Johnson, C.F. (1990) The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem. Planta 181, 117–124.

    Article  CAS  PubMed  Google Scholar 

  38. Morris, D.A., Rubery, P.H., Jarman, J., Sabater, M. (1991) Effects of inhibitors of protein synthesis on transmembrane auxin transport in Cucurbita pepo L hypocotyl segments. J. Exp. Bot. 42, 773–783.

    Article  CAS  Google Scholar 

  39. Morris, D.A., Thomas C.F (1978) A microautoradiographic study of auxin transport in the stem of intact pea seedlings (Pisum sativum L.) J. Exp. Bot. 29, 147–157.

    Article  CAS  Google Scholar 

  40. Muday, G.K., Brunn, S.A., Haworth, P., Subramanian, M. (1993) Evidence for a single naphthylphthalamic acid binding site on the zucchini plasma membrane. Plant Physiol. 103, 449–456.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Muday, G.K., Haworth, P. (1994) Tomato root growth, gravitropism, and lateral development: Correlation with auxin transport. Plant Physiol. Biochem., in press.

    Google Scholar 

  42. Ortuño, A., Sánchez-Bravo, J., Moral, J.R., Acosta, M., Sabater, F. (1990) Changes in the concentration of indole-3-acetic acid during the growth of etiolated lupin hypocotyls. Physiol. Plant. 78, 211–217.

    Article  Google Scholar 

  43. Parker, K.E., Briggs, W.R. (1990a) Transport of indoleacetic acid in intact corn coleoptiles. Plant Physiol. 94, 417–423.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Parker, K.E., Briggs, W.R. (1990b) Transport of indole-3-acetic acid during gravitropism in intact maize coleoptiles. Plant Physiol. 94, 1763–1769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Pickard, B.G. (1985) Role of hormones, protons, and calcium in geotropism. In: Hormonal Regulation of Development III, Role of Environmental Factors, Encyclopedia of Plant Physiology, pp. 193–281, Pharis, R.P., Reid, D.M., eds. Springer Verlag, New York.

    Google Scholar 

  46. Raven, J.A. (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol. 74, 163–172.

    Article  CAS  Google Scholar 

  47. Raven, J.A., Rubery, P.H. (1982) Coordination of development: Hormone receptors, hormone action, and hormone transport. In: Molecular Biology of Plant Development, pp. 28–48, Smith, H., Grierson, D, eds. Blackwell Scientific, Oxford.

    Google Scholar 

  48. Rowntree, R.A., Morris, D.A. (1979) Accumulation of “C from exogenous labelled auxin in lateral root primordia of intact pea seedlings (Pisum sativum L.). Planta 144, 463–466.

    Article  CAS  PubMed  Google Scholar 

  49. Rubery, P.H. (1990) Phytotropins: Receptors and endogenous ligands. Soc. Exp. Biol. Symp. 44, 119–146.

    CAS  Google Scholar 

  50. Rubery, P.H., Jacobs, M. (1990) Auxin transport and its regulation by flavonoids. In: Plant Growth Substances 1988, pp. 428–440, Pharis, R.P., Rood, S.B., eds. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  51. Rubery, P.H., Sheldrake, A.R. (1974) Carrier-mediated auxin transport. Planta 188, 101–121.

    Article  Google Scholar 

  52. Sabater, M., Rubery P.H. (1987) Auxin carriers in Cucurbita vesicles. Planta 171, 507–513.

    Article  CAS  PubMed  Google Scholar 

  53. Salisbury, F.B. (1993) Gravitropism: Changing ideas. Hort. Rev. 15, 233–278.

    Google Scholar 

  54. Sánchez-Bravo, J., Ortuño, A., Botia, J.M., Acosta, M., Sabater, F. (1991) Lateral diffusion of polarly transported indoleacetic acid and its role in the growth of Lupinus albus L. hypocotyls. Planta 185, 391–396.

    Article  PubMed  Google Scholar 

  55. Scheres, B., McKhann, H.I., Zalensky, A., ’Abler, M., Bisseling, T., Hirsch, A.M. (1992) The PsENOD12 gene is expressed at two different sites in Afghanistan pea pseudonodules induced by auxin transport inhibitors. Plant Physiol. 100, 1649–1655.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Schwark, A., Schierle, J. (1992) Interaction of ethylene and auxin in the regulation of hook growth I. The role of auxin in different growing regions of the hypocotyl hook of Phaseolus vulgaris. J. Plant Physiol. 140, 562–570.

    Article  CAS  Google Scholar 

  57. Scott, T.K., Wilkins, M.B. (1968) Auxin transport in roots H. Polar flux of IAA in Zea roots. Planta 83, 323–334.

    Article  CAS  PubMed  Google Scholar 

  58. Shinkle, J.R., Briggs, W.R. (1984) Indole-3-acetic acid sensitization of phytochrome-controlled growth of coleoptile sections. Proc. Natl. Acad. Sci. USA 81, 3742–3746.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Sussman, M.R., Goldsmith, M.H.M. (1981) Auxin uptake and action of N-1naphthylphthalamic acid in corn coleoptiles. Planta 151, 15–25.

    Article  CAS  PubMed  Google Scholar 

  60. Suttle, J.C. (1988b) Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated form etiolated pea epicotyls. Plant Physiol. 88, 795–799.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Suttle,J.C.(1991) Biochemical bases for the loss of basipetal IAA transport with advancing physiological age in etiolated Helianthus hypocotyls.Plant Physiol. 96, 875–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Thimann, K.V. (1988) A history of the knowledge of auxin. In: Physiology and Biochemistry of Auxins in Plants, pp. 3–20, Kutacek, M., Bandurski, R.S., Kreukele, J., eds. SPB Academic Publishing, Prague.

    Google Scholar 

  63. Trewavas, A.J. (1992) FORUM: What remains of the Cholodny-Went theory? Plant Cell Environ. 15, 759–794.

    Google Scholar 

  64. Trillmich, K., Michalke, W. (1979) Kinetic characterization ofN-1-naphthylphthalamic acid binding sites from maize coleoptile homogenates. Planta 145, 119–127.

    Article  CAS  PubMed  Google Scholar 

  65. Tsurumi, S., Ohwaki, Y. (1978) Transport of “C-labeled indoleacetic acid in Vicia root segments. Plant Cell Physiol. 19, 1195–1206.

    CAS  Google Scholar 

  66. Vesper, M.J., Kuss, C.L. (1990) Physiological evidence that the primary site of auxin action in maize coleoptiles is an intracellular site. Planta 182, 486–491.

    Article  CAS  PubMed  Google Scholar 

  67. Wightman, F., Thimann, K.V. (1980) Hormonal factors controlling the initiation and development of lateral roots. Physiol. Plant. 49, 13–20.

    CAS  Google Scholar 

  68. Wilkinson, S., Morris, D.A. (1993) Effects of G-protein probes on interactions between auxin efflux carriers and phytotropin receptors in zucchini (Cucurbita pepo L.) microsomal membranes. Plant Growth Reg. 13, 213–220.

    Article  CAS  Google Scholar 

  69. Yang, T., Law, D.M., Davies, P.J. (1993) Magnitude and kinetics of stem elongation induced by exogenous indole-3-acetic acid in intact light grown pea seedlings. Plant Physio1.102, 717–724.

    CAS  Google Scholar 

  70. Yoon, I.S., Kang, B.G. (1992) Autoregulation of auxin transport in corn coleoptile segments. J. Plant Physiol. 140, 441–446.

    Article  CAS  Google Scholar 

  71. Young, L.M., Evans, M.L., Hertel, R. (1990) Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol. 92, 792–796.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Zettl, R., Feldwisch, J., Boland, W., Schell, J., Palme, K. (1992) 5’-azido-[3,6-3H2]-1naphthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: Identification of a 23-kDa protein from maize coleoptile plasma membranes. Proc. Natl. Acad. Sci. USA 89, 480–484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lomax, T.L., Muday, G.K., Rubery, P.H. (1995). Auxin Transport. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0473-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0473-9_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2985-5

  • Online ISBN: 978-94-011-0473-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics