Skip to main content

Structure at the Top and Bottom of the Mantle

Two Examples of Use of Broad-Band Data in Seismic Tomography

  • Chapter
Monitoring a Comprehensive Test Ban Treaty

Part of the book series: NATO ASI Series ((NSSE,volume 303))

Abstract

Beginning about a decade ago [1], the appreciation of the need for broadband data with a high dynamic range from globally distributed stations has led the seismological community to undertake several initiatives. Examples are the GEOSCOPE, IRIS/IDA, IRIS/USGS, MedNet and GEOFON networks, complemented by national efforts, such as in China, Canada or Mexico. All these groups co-operate in co-ordinating station deployment and data exchange within the framework of the Federation of Digital Seismographic Networks (FDSN; [2]). There are now 80–100 operational stations with the very-broad-band response (0.2-360 seconds) and dynamic range up to 140 db that meet the FDSN Network requirements. Their geographical distribution is yet far from the optimal, with only 25% of the stations located in the Sorthern Hemisphere and with the vast unoccupied oceanic areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IRIS (1984) Science Plan for New Global Seismographic Network, prepared by Incorporated Research Institutions for Seismology, Washington DC.

    Google Scholar 

  2. Romanowicz, B. and A. M. Dziewonski (1986) Towards a federation of broadband seismic networks, EOS, Trans. Am. Geophys. Un., 67, 541–542.

    Article  Google Scholar 

  3. Agnew, D., J. Berger, R. Buland, W. Farrell and F. Gilbert (1976) International deployment of accelerometers: A network of very long period seismology, EOS, Trans. Am. Geophys. Un., 57, 180–188.

    Article  Google Scholar 

  4. Peterson, J., H. M. Butler, L. G. Holcomb and C. R. Hutt (1976) The Seismic Research Observatory, Bull. Seism. Soc. Am., 66, 2049–2068.

    Google Scholar 

  5. Julian, B. R. and M. K. Sengupta (1973) Seismic travel time evidence for lateral inhomogeneity in the deep mantle, Nature, 242, 443.

    Article  Google Scholar 

  6. Dziewonski, A.M. (1975) Resolution of large scale velocity anomalies in the mantle, EOS, Trans. Am. Geophys. Un., 56, 395.

    Google Scholar 

  7. Dziewonski, A. M., B. H. Hager and R. J. O’Connell (1977) Large scale heterogeneity in the lower mantle, J. Geophys. Res., 82, 239–255.

    Article  Google Scholar 

  8. Masters, G., T. H. Jordan, P. G. Silver and F. Gilbert (1982) Aspherical earth structure from fundamental spheroidal mode data, Nature, 298, 609–613.

    Article  Google Scholar 

  9. Nakanishi, I. and D. L. Anderson (1982) Worldwide distribution of group velocity of mantle Rayleigh waves as determined by spherical harmonic inversion, Bull. Seism. Soc. Am., 72, 1185–1194.

    Google Scholar 

  10. Woodhouse, J. H. and A. M. Dziewonski (1984) Mapping the upper mantle: Three dimensional modelling of Earth structure by inversion of seismic waveforms, J. Geophys. Res., 89, 5953–5986.

    Article  Google Scholar 

  11. Dziewonski, A. M. (1984) Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6, J. Geophys. Res., 89, 5929–5952.

    Article  Google Scholar 

  12. Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer and A. M. Dziewonski (1985) Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313, 541–545.

    Article  Google Scholar 

  13. Hager, B. H. and R. W. Clayton (1989) Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid, Mantle Convection (W. R. Peltier, ed.), Gordon and Breach, New York, pp. 657–763.

    Google Scholar 

  14. Forte, A. M. and W. R. Peltier (1987) Plate tectonics and aspherical Earth structure: The importance of poloidal-toroidal coupling, J. Geophys. Res., 92, 3645–3679.

    Article  Google Scholar 

  15. Forte, A.M., and W.R. Peltier (1989) Core-mantle boundary topography and whole-mantle convection, Geophys. Res. Lett., 16, 621–624.

    Article  Google Scholar 

  16. Dziewonski, A. M. and J. H. Woodhouse (1987) Global images of the Earth’s interior, Science, 236, 37–48.

    Article  Google Scholar 

  17. Woodhouse, J. H. and Dziewonski, A. M. (1989) Seismic modeling of the Earth’s large-scale three dimensional structure, Philos. Trans. R. Soc. Lond. A, 328, 291–308.

    Article  Google Scholar 

  18. Romanowicz, B. (1991) Seismic tomography of the Earth’s mantle, Annu. Rev. Earth Planet. Sci. 19, 77–99.

    Article  Google Scholar 

  19. Dziewonski, A. M. (1995) Global Seismic Tomography of the Mantle, in IUGG Quadrennial Report, American Geophysical Union, Washington D.C., in press.

    Google Scholar 

  20. Ekström, G., J. Tromp, and E. W. Larson (1993) Measurements and models of global surface wave propagation, Eos. Trans. AGU, 74, 438.

    Google Scholar 

  21. Su, W.-J., R. L. Woodward and A. M. Dziewonski (1994) Degree-12 Model of Shear Velocity Heterogeneity in the Mantle, J. Geophys. Res., 99 4945–4980.

    Google Scholar 

  22. Mooney, W. D. (1994) Global crustal structure, Eos. Trans. AGU Fall Supplement, 75, 57.

    Google Scholar 

  23. Su, Wei-jia (1993) The Three Dimensional Shear Wave Velocity Structure of the Earth Mantle, Ph.D Thesis of Harvard University.

    Google Scholar 

  24. Su, W.-J. and A. M. Dziewonski (1991) Predominance of long-wavelength heterogeneity in the mantle, Nature, 352, 121–126.

    Article  Google Scholar 

  25. Woodward, R. L. and G. Masters (1991) Global upper mantle structure from long-period Differential travel times. J. Geophys. Res., 96, 6351–6377.

    Article  Google Scholar 

  26. Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.

    Article  Google Scholar 

  27. Grand, S. P., and D. V. Helmberger (1984) Upper mantle shear structure of North America, Geophys. J. R. Astron. Soc., 76, 399–438.

    Article  Google Scholar 

  28. Cleary, J. R. and R. A. W. Haddon (1972) Seismic wave scattering near the core-mantle boundary: a new interpretation of precursors to PKIKP, Nature, 240, 549–551.

    Article  Google Scholar 

  29. Doornbos, D. J. (1976) Characteristics of lower mantle heterogeneities from scattered waves, Geophys. J. Roy. Astron. Soc., 44, 447–470.

    Article  Google Scholar 

  30. Bataille, K. R. S. Wu, and S. M. Flatte (1990) Inhomogeneities near the core-mantle boundary inferred from short-period scattered waves: A review, Pure Appl. Geophys., 132, 151–173.

    Article  Google Scholar 

  31. Lay, T. and D. V. Helmberger (1983) A lower mantle S-wave triplication and the shear velocity structure of D", Geophys. J. R. Astron. Soc., 75, 799–837.

    Article  Google Scholar 

  32. Young, C. J. and T. Lay (1987) Evidence for a shear velocity discontinuity in the lowermost mantle beneath India and the Indian Ocean, Phys. Earth Planet. Inter., 49, 37–53.

    Article  Google Scholar 

  33. Young, C. J. and T. Lay (1987) The core-mantle boundary, Annu. Rev. Earth Planet. Sci., 15, 25–46.

    Article  Google Scholar 

  34. Gaherty, J. B. and T. Lay (1992) Investigation of Laterally Heterogeneous Shear Velocity Structure in D beneath Eurasia. J. Geophys. Res., 97, 417–435.

    Article  Google Scholar 

  35. Weber, M. (1993) P and S wave reflections from anomalies in the lowermost mantle, Geophys. J. Int., 115, 183–210.

    Article  Google Scholar 

  36. Tanimoto, T. (1990) Long-wavelength S-wave velocity structure throughout the mantle. Geophys. J. Int., 100, 327–336.

    Article  Google Scholar 

  37. Dziewonski, A. M., and R. L. Woodward (1992) Acoustic imaging at the planetary scale, in Acoustical Imaging, 19, H. Ermert and H.-P. Harjes, eds, Plenum Press, New York, 785–797.

    Chapter  Google Scholar 

  38. Woodward, R. L. and G. Masters (1991) Lower-mantle structure from ScS-S differential travel times. Nature, 352, 231–233.

    Article  Google Scholar 

  39. Wysession, M. E., E. A. Okal and C. R. Bina (1992) The Structure of the Core-Mantle Boundary from Diffracted Waves, J. Geophys. Res., 97, 8749–8764.

    Article  Google Scholar 

  40. Garnero, E. and D. Helmberger (1993) Travel times of S and SKS: Implications for 3-D Lower Mantle Structure Beneath the Central Pacific. J. Geophs. Res., 98, 8225–8241.

    Article  Google Scholar 

  41. Su, W.-J., R. L. Woodward, and A. M. Dziewonski (1992) Joint inversions of travel time and waveform data for the 3-D models of the Earth up to degree 12, Eos Trans. AGU, Spring Meeting Suppl., 73, 201–202.

    Google Scholar 

  42. Masters, G., H. Bolton, and P. Shearer (1992) Large-scale 3-dimensional structure of the mantle, Eos Trans. AGU, Spring Meeting Suppl., 73, 201.

    Google Scholar 

  43. Souriau, A. and Poupinet, G. (1991) A study of the outermost liquid core using differential travel times of the SKS, SKKS and S3KS phases. Phys. Earth Planet. Inter., 68, 183–199.

    Article  Google Scholar 

  44. Dziewonski, A. M., T.-A. Chou and Woodhouse (1981) J. H., Determination of Earthquake Source Parameters from Waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852.

    Article  Google Scholar 

  45. Choy, G. L. (1977) Theoretical seismograms of core phases calculated by frequency-dependent full wave theory, and their interpretations. Geophys. J. R. Astron. Soc., 65, 55–70.

    Google Scholar 

  46. Young, C. J. and T. Lay (1990) Multiple phase analysis of the shear velocity structure in the D" region beneath Alaska, J. Geophys. Res., 95, 17385–17402.

    Article  Google Scholar 

  47. Lay, T. and C. J. Young (1990) The stably-stratified outermost core revisited, Geophys. Res. Lett., 17, 2001–2004.

    Article  Google Scholar 

  48. Vinnik, L., B. Romanowicz and L. Makaeva (1994) Long range SVdiff propagation in D", Eos. Trans. AGU Fall Supplement, 75, 663.

    Google Scholar 

  49. Jordan, T. H. and W. S. Lynn (1974) A velocity anomaly in the lower mantle, J. Geophys. Res., 79, 2679–2685.

    Article  Google Scholar 

  50. Hales, A. L. and Roberts, J. L. (1970) Shear velocities in the lower mantle and the radius of the core. Bull. Seism. Soc. Am., 60, 1427–1436.

    Google Scholar 

  51. Hales, A. L. and Roberts, J. L. (1971) The velocities in the outer core. Bull. Seism. Soc. Am., 61, 1051–1059.

    Google Scholar 

  52. Schweitzer, J. and G. Müller (1986) Anomalous difference travel times and amplitude ratios of SKS and SKKS from Tonga-Fiji events, Geophys. Res. Lett., 13, 1529–1532.

    Article  Google Scholar 

  53. Garnero, E., D. Helmberger and G. Engen (1988) Lateral variations near the core-mantle boundary. Geophys. Res. Lett., 15, 609–612.

    Article  Google Scholar 

  54. Souriau, A. and Poupinet, G. (1990) A latitudinal pattern in the structure of the outermost liquid core, revealed by the travel times of SKKS-SKS seismic phases. Geophys. Res. Lett., 17, 2005–2007.

    Article  Google Scholar 

  55. Liu, X.-F. and A. M. Dziewonski (1995) Image of the Lowermost Mantle Shear Wave Velocity Anomalies, in preparation.

    Google Scholar 

  56. Stevenson, D.J. (1994) Relative importance of thermal and compositional fluctuations in D" Eos. Trans. AGU Fall Suppl., 75, 662.

    Google Scholar 

  57. Knittle, E. and R. Jeanloz (1989) Simulating the core-mantle boundary, an experimental study of high-pressure reactions between silicates and liquid iron, Geophys. Res. Lett., 16, 609–612.

    Article  Google Scholar 

  58. Jeanloz, R. (1990) The nature of the earth’s core, Annu. Rev. Earth Planet. Sci., 18, 357–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dziewonski, A.M., Ekström, G., Liu, XF. (1996). Structure at the Top and Bottom of the Mantle. In: Husebye, E.S., Dainty, A.M. (eds) Monitoring a Comprehensive Test Ban Treaty. NATO ASI Series, vol 303. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0419-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0419-7_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4187-4

  • Online ISBN: 978-94-011-0419-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics