Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 472))

Abstract

The purpose of these lectures is to show how the topological degree theory for (non-convex) multivalued mappings can be usefully applied to differential inclusions. Namely, we shall apply it to get a topological characterization of the set of solutions and periodic solutions for some differential inclusions. We discuss these problems in the case when the considered differential inclusions are defined on Banach spaces or on proximate retracts. Recall that a proximate retract is a compact subset A of the Euclidean space ℝn such that there exists an open neighbourhood U of A in ℝn and a metric retraction r: U → A. It is well known that any compact convex subset A of ℝn or any compact C 2-manifold M ⊂ ℝn is a proximate retract. Moreover, a topological degree method for implicit differential equations and differential inclusions is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anichini,G., Conti,G. and Zecca, P., Approximation of nonconvex set valued mappings, Boll. Un. Mat. ltd. A(6) (1985), 145-153.

    Google Scholar 

  2. Anichini,G., Conti,G. and Zecca,P., Approximation and selection theorem for nonconvex multifunctions in infinite dimensional spaces, Boll. Un. Mat. Ital. B(7) 4 (1990), 411-422.

    MathSciNet  MATH  Google Scholar 

  3. Anichini,G. and Zecca,P., Multivalued differential equations in Banach space. An application to control theory, J. Optim. Theory Appl. 21 (1977), 477-486.

    Article  MathSciNet  MATH  Google Scholar 

  4. Antosiewicz,H.A. and Cellina,A., Continuous selections and differential relations J. Differential Equation 19 (1975), 386-398.

    Article  MathSciNet  MATH  Google Scholar 

  5. Aronszajn,N., Le correspondant topologique de l’unicité dans la théorie des équations différentielles, Ann. of Math. 43 (1942), 730-738.

    Article  MathSciNet  MATH  Google Scholar 

  6. Aubin, .P. and Cellina,A., Differential Inclusions, Springer-Verlag, Berlin-Heidel-

    Google Scholar 

  7. berg-New York, 1984.

    Google Scholar 

  8. Bader, R. and Kryszewski W., Fixed point index for compositions of set-valued maps with proximally ∞-connected values on arbitrary ANR’s, to appear in Set-Valued Anal.

    Google Scholar 

  9. Beer,G., On a theorem of Cellina for set valued functions, Rocky Mountain J. 18 (1988), 37-47.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bielawski,R., Simplicial convexity and its applications, J. Math. Anal. Appl. 127 (1987), 155-171.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bielawski,R. and Górniewicz,L., A fixed point index approach to some differential equations, in: Topological Fixed Point Theory and Applications (Boju Jiang, ed.), Lecture Notes in Math. 1411, Springer-Verlag, Berlin-Heidelberg-New York, 1989, 9-14.

    Chapter  Google Scholar 

  12. Bielawski,R., Górniewicz,L. and Plaskacz,S., Topological approach to differential inclusions on closed subsets of ℝn, Dynam. Report. (N. S.) 1 (1992), 225-250.

    Google Scholar 

  13. Blagodatskikh,V.I, Local controlability of differential inclusions, Differentsial’nye Uravneniya 9 (1973), 361-362 (Russian); translation: Differential Equations 9 (1973), 277-278.

    Google Scholar 

  14. Bogatyrev,W.A., Fixed points and properties of solutions of differential inclusions, Izv. Akad. Nauk SSSR 47 (1983), 895-909 (Russian).

    MathSciNet  MATH  Google Scholar 

  15. Borsuk,K. Theory of Retracts, Monografie Matematyczne 4, PWN, Warszawa 1967.

    MATH  Google Scholar 

  16. Borisovich,Yu. G., Gelman, B.D., Myshkis, A.D. and Obukhowskiĩ, V.V., Topological methods in the fixed point theory of multivalued mappings, Uspekhi. Mat. Nauk 35 (1980), 59-126 (Russian).

    MathSciNet  Google Scholar 

  17. Borisovich,Yu. G., Gelman,B.D., Myshkis,A.D. and Obukhowskiĩ,V.V., Introduction to the Theory of Multivalued Mappings, Voronezh. Gos. Univ., Voronezh, 1986 (Russian).

    Google Scholar 

  18. Bressan,A., On the qualitative theory of lower semicontinuous differential inclusions, J. Differential Equations 31 (1989), 379-391.

    Article  MathSciNet  Google Scholar 

  19. Bressan,A., Directionally continuous selections and differential inclusions, Funk-

    Google Scholar 

  20. cial. Ekvac. 31 (1988), 459-470,

    Google Scholar 

  21. Bressan,A. and Colombo,G., Extensions and selections of maps with decomposable values, Studia Math. 40 (1988), 69-86.

    MathSciNet  Google Scholar 

  22. Bressan,A., Cellina,A. and Fryszkowski,A., A class of absolute retracts in spaces of integrable functions, Proc. Amer. Math. Soc. 112 (1991), 413-418.

    Article  MathSciNet  MATH  Google Scholar 

  23. Browder,F. and Gupta,C.P., Topological degree and nonlinear mappings of analytic type in Banach spaces, J. Math. Anal. Appl. 26 (1969), 390-402.

    Article  MathSciNet  MATH  Google Scholar 

  24. Cellina,A., On the set of solutions to Lipschitzean differential equations, Differential Integral Equations 1 (1988), 495-500.

    MathSciNet  MATH  Google Scholar 

  25. Cellina,A., A selection theorem, Rend. Sem. Univ. Padova 55 (1976), 99-107.

    MathSciNet  Google Scholar 

  26. Cellina,A. and Colombo,G., An existence result for differential inclusions with non-convex right-hand side, Funkcial. Ekvac. 32 (1989), 407-416.

    MathSciNet  MATH  Google Scholar 

  27. Cellina,A. and Colombo,R.M., Some qualitative and quantitative results on differential inclusions, in: Set-Valued Analysis and Differential Inclusions (A.B. Kurzhanski and A. Lasota, eds.), Progr. Systems Control Theory 16, Birkhäuser, Basel-Boston 1993, 43-60.

    Google Scholar 

  28. Cellina,A. and Lasota,A., A new approach to the definition of topological degree for multivalued mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8 (1969), 434-440.

    MathSciNet  Google Scholar 

  29. Davy,J.L., Properties of the solution set of a generalized differential equation, Bull. Austral. Math. Soc. 6 (1972), 379-398.

    Article  MathSciNet  MATH  Google Scholar 

  30. De Blasi,F.S. and Myjak,J., On the solution sets for differential inclusions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 12 (1985), 17-23.

    Google Scholar 

  31. De Blasi,F.S. and Myjak,J., A remark on the definition of topological degree for set-valued mappings, J. Math. Anal. Appl. 92 (1983), 445-451.

    Article  MathSciNet  MATH  Google Scholar 

  32. De Blasi, F.S. and Myjak, J., On continuous approximation for multifunctions, Pacific J. Math. 123 (1986), 9-30.

    MathSciNet  MATH  Google Scholar 

  33. De Blasi,F.S. and Pianigiani,G., Topological properties of nonconvex differential inclusions, Nonlinear Anal. 20 (1993), 871-894.

    Article  MathSciNet  MATH  Google Scholar 

  34. De Blasi,F.S. and Pianigiani,G., A Baire category approach to the existence of solutions of multivalued differential equations in Banach spaces, Funkcial. Ekvac. 25 (1982), 153-162.

    MathSciNet  MATH  Google Scholar 

  35. De Blasi, F.S. and Pianigiani, G., On the density of extremal solutions of differential inclusions, Ann. Polon. Math. 56 (1992), 133-142.

    MathSciNet  MATH  Google Scholar 

  36. De Blasi,F.S. and Pianigiani,G., Differential inclusions in Banach spaces, J. Differential Equations 66 (1987), 208-229.

    Article  MathSciNet  MATH  Google Scholar 

  37. De Blasi,F.S. and Pianigiani,G., Solution sets of boundary value problems for nonconvex differential inclusions, Topol. Meth. Nonlinear Anal. 1 (1993), 303-314.

    MATH  Google Scholar 

  38. Dold,D., Lectures on Algebraic Topology, Springer-Verlag, Berlin-Heidelberg- New York, 1972.

    MATH  Google Scholar 

  39. Deimling,K., On solution sets of multivalued differential equations, Appl. Anal. 30 (1988), 129-135.

    Article  MathSciNet  MATH  Google Scholar 

  40. Deimling,K., Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math. 596, Springer-Verlag, Berlin-Heidelberg-New York, 596, 1977.

    Google Scholar 

  41. Deimling,K., Multivalued differential equations on closed sets II, Differential Integral Equations 3 (1990), 639-642.

    MathSciNet  MATH  Google Scholar 

  42. Dugundji,J. and Granas,A. Fixed Point Theory, Vol.1, PWN, Warszawa, 1981.

    Google Scholar 

  43. Dylawerski,G. and Górniewicz,L., A remark on the Krasnosielskii's translation operator, Serdica 9 (1983), 102-107.

    MathSciNet  MATH  Google Scholar 

  44. Eilenberg,S. and Montgomery,D., Fixed point theorem for multivalued transformations, Amer. J. Math. 58 (1946), 214-222.

    Article  MathSciNet  Google Scholar 

  45. Filippov,A.F., Differential Equations With Discontinuous Right Hand Sides, Math. Appl. (Soviet Ser.) 18, Kluwer, Dordrecht, 1988 (translation of the Russion edition, “Nauka”, Moscow, 1985).

    MATH  Google Scholar 

  46. Frigon,M., Application de la théorie de la transversalité topologique à des problemes non lineaires pour des equations differentielles ordinaires, Dissertations Math. (Rozprawy Mat) 296 (1990), 1-71.

    MathSciNet  Google Scholar 

  47. Fryszkowski,A. and Rzezuchowski,T., Continuous version of Filippov-Ważewski theorem, J. Differential Equations 94 (1991), 254-265.

    Article  MathSciNet  Google Scholar 

  48. Furi,M., Nistri,P., Pera,P. and Zecca,P., Topological methods for the global controllability of nonlinear systems, J. Optim. Theory Appl. 45 (1985), 231-256.

    Article  MathSciNet  MATH  Google Scholar 

  49. Górniewicz,L., Homological methods in fixed point theory of multivalued mappings, Dissertationes Math. (Rozprawy Mat.) 129 (1976), 1-71.

    Google Scholar 

  50. Górniewicz,L., Topological degree of morphisms and its applications to differential inclusions, Race. Sem. Dip. Mat. Univ. Studi Calabria 5 (1985), 1-48.

    Google Scholar 

  51. Górniewicz, L., On the solution set of differential inclusions, J. Math. Anal. Appl. 113 (1986), 235-244.

    Article  MathSciNet  MATH  Google Scholar 

  52. Górniewicz,L., Recent results on the solution sets of differential inclusions, in: Méthodes topologiques en analyses convexe (Partie 3) (A. Granas, eds), Sem. de Math. Super. 110, Presses Univ. de Montréal, Montréal, 1990, 101-122.

    Google Scholar 

  53. Górniewicz,L. and Granas,A., Some general theorems in coincidence theory, J. Math. Pure Appl. 60 (1981), 361-373.

    MATH  Google Scholar 

  54. Górniewicz,L., Granas,A. and Kryszewski,W., Sur la méthode de l’homotopie dans la théorie des points fixes. Partie 1: Transversalité topologique; Partie 2: L'indice de point fixe, C. R. Acad. Sci. Paris 307 (1988), 489-492,

    MATH  Google Scholar 

  55. Górniewicz,L., Granas,A. and Kryszewski,W., Sur la méthode de l’homotopie dans la théorie des points fixes. Partie 1: Transversalité topologique; Partie 2: L'indice de point fixe, C. R. Acad. Sci. Paris 308 (1989), 449-452.

    MATH  Google Scholar 

  56. Górniewicz,L., Granas,A. and Kryszewski,W., On the homotopy method in the fixed point index theory for multivalued mappings of compact ANR-s, J. Math. Anal. Appl. 161 (1991), 457-473.

    Article  MathSciNet  MATH  Google Scholar 

  57. Górniewicz,L. and Plaskacz,S., Periodic solutions of differential inclusions in ℝn Boll. Un. Mat. Ital (7) 7A (1993), 409-420.

    Google Scholar 

  58. Górniewicz,L. and Ślosarski,M., Topological essentiality and differential inclusions, Bull. Austral. Math. Soc. 45 (1992), 177-193.

    Article  MathSciNet  MATH  Google Scholar 

  59. Granas,A., Sur la notion du degrée topologique pour une certaine classe de transformations multivalentes dans les espaces de Banach, Bull. Acad. Polon. Sci. Sér. Math. Astr. Phys. 7 (1959), 181-194.

    Google Scholar 

  60. Granas,A., Theorem on antipodes and theorems on fixed points for a certain class of multivalued maps in Banach spaces, Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 7 (1959), 271-275.

    MathSciNet  MATH  Google Scholar 

  61. Granas,A., Topics in Infinite Dimensional Topology, Séminaire J. Leray, Paris, 1969/1970.

    Google Scholar 

  62. Granas,A., The theory of compact vector fields and some of its applications, Dissertationes Math. (Rozprawy Mat.) 30 (1962), 1-136.

    MathSciNet  Google Scholar 

  63. Granas,A., Guenther,R. and Lee,J., Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. (Rozprawy Mat.) 244 (1985), 1-132.

    MathSciNet  Google Scholar 

  64. Granas,A. and Jaworowski,J., Some theorems of multivalued maps of subsets of the Euclidean space, Bull. Acad. Polon. Sci. Ser. Math. Astr. Phys. 7 (1959), 277-283.

    MathSciNet  MATH  Google Scholar 

  65. Haddad,G., Topological properties of the sets of solutions for functional differential equations, Nonlinear Anal. 5 (1981), 1349-1366.

    Article  MathSciNet  MATH  Google Scholar 

  66. Himmelberg,C.J. and Van Vleck,F.S., A note on the solution sets of differential inclusions, Rocky Mountain J. Math. 12 (1982), 621-625.

    Article  MathSciNet  MATH  Google Scholar 

  67. Hukuhara,M., Sur l'application semi-continue dont la valeur est un compact convexe, Funkcial Ekvac. 10 (1967), 43-66.

    MathSciNet  MATH  Google Scholar 

  68. Hyman,D.M., On decreasing sequences of compact absolute retracts, Fund. Math. 64 (1959), 91-97.

    MathSciNet  Google Scholar 

  69. Jarnik,J. and Kurzweil,J., On conditions on right hand sides of differential relations, Časopis Pěst. Mat. 102 (1977), 334-349.

    MathSciNet  MATH  Google Scholar 

  70. Jaworowski,J., Some consequences of the Vietoris Mapping Theorem, Fund. Math. 45 (1958), 261-272.

    MathSciNet  MATH  Google Scholar 

  71. Jaworowski,J., Set-valued fixed point theorems of approximative retracts, in: Set- Valued Mappings, Selections and Topological Properties of2 X (W.M. Fleischman, eds.) Lecture Notes in Math. 171, Springier-Verlag, Berlin-Heidelberg-New York, 1970, 34-39.

    Google Scholar 

  72. Kamenskii,M.I. and Obukhovskii,V.V., On periodic solutions of differential inclusions with unbounded operators in Banach spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 21 (1991), 173-191.

    MathSciNet  Google Scholar 

  73. Kisielewicz,M., Differential Inclusions and Optimal Control, PWN-Polish Scientific Publishers, Warszawa, and Kluwer Academic Publishers, Dordrecht-Boston-London, 1991.

    Google Scholar 

  74. Krasnoselskiĩ,M. and Zabreĩko,P., Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1984.

    Book  Google Scholar 

  75. Kryszewski, W., Homotopy invariants for set-valued maps homotopy-approximation approach, in: Fixed Point Theory and Applications, (M.A.Thera and J-B.Baillon, eds.), Pitman Res. Notes Math. Ser. 252, Longman, Harlow, 1991, 269-284.

    Google Scholar 

  76. Kurland,H. and Robin,J., Infinite Codimension and Transversality, Lecture Notes in Math. 468, Springer-Verlag, Berlin-Heidelberg-New York, 1974.

    Google Scholar 

  77. Lasry, J.M. and Robert, R., Analyse non linéaire multivoque, Publ. no 7611, Centre Rech. Math. Décision (Ceremade), Université de Paris IX (Dauphine), 71-190.

    Google Scholar 

  78. Macki,J.W., Nistri,P. and Zecca,P., An existence of periodic solutions to nonau-tonomus differential inclusions, Proc. Amer. Math. Soc. 104 (1988), 840-844.

    Article  MathSciNet  MATH  Google Scholar 

  79. Mas-Colell,A., A note on a theorem of F.Browder, Math. Programming 6 (1974), 229-233.

    Article  MathSciNet  MATH  Google Scholar 

  80. Olech,C., Existence of solutions of non-convex orientor field, Boll. Un. Mat. Ital. (4) 11 (1975), 189-197.

    MathSciNet  MATH  Google Scholar 

  81. Papageorgiou,N.S., A property of the solution set of differential inclusions in Banach spaces with Caratheodory orientor field, Appl. Anal. 27 (1988), 279-287.

    Article  MathSciNet  MATH  Google Scholar 

  82. Plaskacz,S., Periodic solutions of differential inclusions on compact subsets of ℝn J. Math. Anal. Appl. 148 (1990), 202-212.

    Article  MathSciNet  MATH  Google Scholar 

  83. Plaskacz,S., On the solution sets for differential inclusions, Boll. Un. Mat. Ital. (7) 6A (1992), 387-394.

    MathSciNet  Google Scholar 

  84. Plaskacz,S., Periodic Solutions of Differential Inclusions on Closed Subsets of Eu- clidean Spaces, Ph. D. Thesis, Uniwersytet Mikolaja Kopernika, Toruń, 1990 (Polish).

    Google Scholar 

  85. Pliś,A., Measurable orientor fields, Bull. Acad. Polon. Sci. Sér. Math. Astr. Phys. 13 (1965), 565-569.

    MATH  Google Scholar 

  86. Pruszko,T., Some applications of the degree theory to multi-valued boundary value problems, Dissertationes Math. (Rozprawy Mat. 229 (1984), 1-48.

    MathSciNet  Google Scholar 

  87. Ricceri,B., Une propriété topologique de l’ensemble des points fixes d'une con- traction multivoque à valeures convexes, Atti Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. (8) 81 (1987), 283-286.

    MathSciNet  MATH  Google Scholar 

  88. Ricceri,B., Existence theorems for nonlinear problems, Rend. Acad. Naz. Sci. XL Mem. Mat. (5) 11 (1987), 77-99.

    MathSciNet  MATH  Google Scholar 

  89. Ricceri, B., On the Cauchy problem for the differential equation Ft,x,x’,ldots, x (k) ) = 0, Glasgow Math. J. 33 (1991), 343-348.

    Article  MathSciNet  MATH  Google Scholar 

  90. Rzeżuchowski,T., Scorza-Dragoni type theorem for upper semicontinuous multi-valued functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 28 (1980), 61-66.

    MATH  Google Scholar 

  91. Ślosarski,M., Some Applications of the Topological Essentiality and Characterization of the Fixed Point Set to Differential Inclusions, Ph. D. Thesis, Uniwersytet Mikolaja Kopernika, Toruri, 1993 (Polish).

    Google Scholar 

  92. Szufla,S., Sets of fixed points of nonlinear mappings in function spaces, Funkcial. Ekvac. 22 (1979), 121-126.

    MathSciNet  MATH  Google Scholar 

  93. Tallos,P., Viability problems for nonautonomus differential inclusions, SI AM J. Control and Opt. 29 (1991), 253-263.

    Article  MathSciNet  MATH  Google Scholar 

  94. Tolstonogov,A.A., On the structure of the set of solution for differential inclusions in a Banach space, Mat. Sb. (N. S.) 118 (160) (1982) no. 1, 3-18 (Russian); translation: Math. USSR Sb. 46 (1983), 1-15.

    Google Scholar 

  95. Tolstonogov,A.A., Differential Inclusions in a Banach Space, “Nauka” Sibirsk. Otdel., Novosibirsk, 1986 (Russian).

    MATH  Google Scholar 

  96. Von Neumann,J., A Model of General Economic Equilibrium, Collected Works, Vol. VI, Pergamon Press, Oxford, 1963, 29-37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Górniewicz, L. (1995). Topological approach to differential inclusions. In: Granas, A., Frigon, M., Sabidussi, G. (eds) Topological Methods in Differential Equations and Inclusions. NATO ASI Series, vol 472. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0339-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0339-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4150-8

  • Online ISBN: 978-94-011-0339-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics