Skip to main content

Atmospheric Vortices

  • Chapter
Fluid Vortices

Abstract

This chapter discusses atmospheric vortices. §2 of the chapter presents a brief derivation of the mathematical formulation used in characterizing atmospheric vortices. Atmospheric turbulent vortices are discussed in §3. Solenoidally-generated vortices, which include sea and land breezes, mountain-valley circulations, and microbursts are discussed in §4, while small-scale vortices generated by vertical shear of the horizontal wind are briefly described in §5. Synoptic-scale vortices are introduced in §6, cumulonimbus-caused mesoscale vortical motion is presented in §7, and mesoscale vortices resulting from horizontal shear of the horizontal wind are discussed in §8. A relatively in-depth summary of tornadoes and tropical cyclones is given in §9 and §10, respectively. Finally, a summary of the chapter is presented in §11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Air Weather Service Technical Report-79/006 (revised), 1990 The use of the Skew T, Log P diagram in analysis and forecasting. HQ AWS/XT, Scott AFB, IL 62225-5008, 153 pp.

    Google Scholar 

  • Anthes, R.A. 1982 Tropical cyclones: Their evolution, structure, and effects. Meteor. Monogr. 41, 208 pp.

    Google Scholar 

  • Arritt, R.W., 1989 Numerical modeling of the offshore extent of sea breezes. Quart J. Roy. Meteor. Soc. 115, 547–570.

    Article  ADS  Google Scholar 

  • Atkinson, B.W. 1981 Mesoscale atmospheric circulations. Academic Press.

    Google Scholar 

  • Baker, G.L. and Church, C.R. 1979 Measurements of core radii and peak velocities in modeled atmospheric vortices. J. Atmos. Sci. 36, 2413–2424.

    Article  ADS  Google Scholar 

  • Bannon, P.R. 1989 Linear baroclinic instability with the geostrophic momentum approximation. J. Atmos. Sci. 46, 402–409.

    Article  ADS  Google Scholar 

  • Bartels, D.L. and Maddox, R.A. 1991 Midlevel cyclonic vortices generate by mesoscale convective systems. Mon. Wea. Rev. 119, 104–118.

    Article  ADS  Google Scholar 

  • Bennetts, D.A. and Sharp, J.C. 1982 The relevance of conditional symmetric instability to the prediction of mesoscale frontal rainbands. Quart. J. Roy. Meteor. Soc. 108, 595–602.

    Article  ADS  Google Scholar 

  • Bienkiewicz, B. and Dudhia, P. 1993 Physical modeling of tornado-like flow and tornado effects on building loading. 7th US National Conference on Wind Engineering Los Angeles, June, 1993.

    Google Scholar 

  • Black, M.L. and Willoughby, H.E. 1992 The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev. 120, 947–957.

    Article  ADS  Google Scholar 

  • Bluestein, H. 1992 Synoptic-dynamic meteorology in midlatitudes. Oxford University Press.

    Google Scholar 

  • Bluestein, H.B. and Unruh, W.P. 1993 On the use of a portable FM-CW Doppler radar for tornado research. The Tornado: Its Structure, Dynamics, Prediction, and Hazards. (eds. Church, C., Burgess, D., Doswell, C., Davies-Jones, R.) Geophysical Monograph 79, American Geophysical Union. 367–376.

    Chapter  Google Scholar 

  • Burpee, R.W. 1972 The origin and structure of easterly waves in the lower troposphere of north Africa. J. Atmos. Sci. 29, 77–90.

    Article  ADS  Google Scholar 

  • Carlson, T.N. 1991 Mid-latitude weather systems. Harper Collins Academics.

    Google Scholar 

  • Challa, M. and Pfeffer, R.L. 1990 Formation of Atlantic hurricanes from cloud clusters and depressions. J. Atmos. Sci. 47, 909–927.

    Article  ADS  Google Scholar 

  • Charney, J.G. 1947 The dynamics of long waves in a baroclinic westerly current. J. Meteor. 5, 135–162.

    MathSciNet  Google Scholar 

  • Chopra, K.P. 1973 Atmospheric and oceanic flow problems introduced by islands. Adv. Geophys. 16, 297–421.

    Article  ADS  Google Scholar 

  • Church, C.R., Snow, J.T., Baker, G.L. and Agee, E.M. 1979 Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation. J. Atmos. Sci. 36, 1755–1776.

    Article  ADS  Google Scholar 

  • Ciesielski, P.E., Stevens, D.E., Johnson, R.H. and Dean, K.R. 1989 Observational evidence for asymmetric inertial instability J. Atmos. Sci. 46, 814–831.

    Article  ADS  Google Scholar 

  • Clark, T.L. and Farley, R.D. 1984 Severe downslope windstorm calculations in two and three spatial dimensions using anelastic noninteractive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci. 41, 329–350.

    Article  ADS  Google Scholar 

  • Cotton, W.R. 1990 Storms. Geophysical Science Series, Vol. 1. ASTeR Press, Fort Collins, CO, 158 pp.

    Google Scholar 

  • Crook, N.A., Clark, T.L. and Moncrieff, M.W. 1990 The Denver cyclone. Part I: Generation in low Froude number flow. J. Atmos. Sci. 47, 2725–2742.

    Article  ADS  Google Scholar 

  • Davidson, N.E., Holland, G.J., McBride, J.L. and Keenan, T.D. 1990 On the formation of AMEX tropical cyclones Irma and Jason. Mon. Wea. Rev. 118, 1981–2000.

    Article  ADS  Google Scholar 

  • Davies-Jones, R.P. 1982 A new look at the vorticity equation with application to tornadogenesis. Preprints, 12th Conference on Severe Local Storms, San Antonio, Texas, Amer. Meteor. Soc, 249–252.

    Google Scholar 

  • Davies-Jones, R.P. 1984 Streamwise vorticity: the origin of updraft rotation in supercell storms. J. Atmos. Sci. 41, 2991–3006.

    Article  ADS  Google Scholar 

  • Davies-Jones, R.P. and Brooks, H. 1993 Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards. (eds. Church, C., Burgess, D., and Doswell, C., and Davies-Jones, R.) Geophysical Monograph 79, American Geophysical union. 105–114.

    Chapter  Google Scholar 

  • Dobrovolskis, A.R. and Diner, D.J. 1990 Barotropic instability with divergence: Theory and applications to Venus. J. Atmos. Sci. 47, 1578–1588.

    Article  ADS  Google Scholar 

  • Dowling, T.E. and Ingersoll, A.P. 1989 Jupiter’s great red spot as a shallow water system. J. Atmos. Sci. 46, 3256–3278.

    Article  ADS  Google Scholar 

  • Dunn, G.E. and Miller, B.I. 1960 Atlantic hurricanes. Louisiana State University Press.

    Google Scholar 

  • Emanuel, K.A. 1983 The Lagrangian parcel dynamics of moist symmetric instability. J. Atmos. Sci. 40, 2368.

    Article  ADS  Google Scholar 

  • Emanuel, K.A. 1984 A note on the stability of columnar vortices. J. Fluid Mech. 145, 235–238.

    Article  ADS  MATH  Google Scholar 

  • Emanuel, K.A. 1986 An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 6, 585–604.

    Article  ADS  Google Scholar 

  • Estoque, M.A. 1962 The sea breeze as a function of prevailing synoptic situation. J. Atmos. Sci. 19, 244–250.

    Article  ADS  Google Scholar 

  • Fiedler, B.H. and Rotunno, R. 1986 A theory for the maximum windspeeds in tornado-like vortices. J. Atmos. Sci. 43, 2328–2340.

    Article  ADS  Google Scholar 

  • Fujita, T. 1970 The Lubbock tornadoes: A study of suction spots. Weatherwise 23, 160–173.

    Article  Google Scholar 

  • Fujita, T., Pearson, A.D., Forbes, G.S., Umenhofer, T.A., Pearl, E.W. and Tecson, J.J. 1976 Photogrammetric analyses of tornadoes. Proc. Symp. on Tornadoes. Lubbock, Institute for Disaster Research, Texas Tech University, 107–143.

    Google Scholar 

  • Garratt, J.R. 1992 The atmospheric boundary layer, Cambridge Atmospheric and Space Science Series, Cambridge University Press.

    Google Scholar 

  • Golden, J.H. 1976 An assessment of wind speeds in tornadoes. Proc. Symp. on Tornadoes. Lubbock, Institute for Disaster Research, Texas Tech University, 107–143.

    Google Scholar 

  • Grasso, L.D. 1992 A numerical simulation of tornadogenesis. M.S. Thesis, Colorado State University.

    Google Scholar 

  • Gray, W.M. 1975 Tropical cyclone genesis. Atmospheric Science Paper No. 234, Colorado State University, Fort Collins, Colorado.

    Google Scholar 

  • Gray, W.M. 1979 Hurricanes: their formation, structure and likely role in the tropical circulation. Supplement to Meteorology Over the Tropical Oceans. RMS Publishers., 155–218.

    Google Scholar 

  • Grazulis, T.P. 1990 Significant tornadoes 1880-1989. Environmental Films, St. Johnsbury, Vermont.

    Google Scholar 

  • Holland, G.J. and Merrill, R.T. 1984 On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc. 110, 723–745.

    Article  ADS  Google Scholar 

  • Holton, J.R. 1992 An introduction to dynamic meteorology. Academic Press.

    Google Scholar 

  • Hoskins, B.J., McIntyre, M.E. and Robertson, A.W. 1985 On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc. 111, 877–946.

    Article  ADS  Google Scholar 

  • Johnson, R.H., Chen, S. and Toth, J.J. 1989 Circulations associated with a mature-to-decaying midlatitude mesoscale convective system. Part I: Surface features -heat bursts and meso-low development. Mon. Wea. Rev. 117, 942–959.

    Article  ADS  Google Scholar 

  • Jones, R.W. 1980 A three-dimensional tropical cyclone model with release of latent heat by the resolvable scales. J. Atmos. Sci. 37, 930–938.

    Article  ADS  Google Scholar 

  • Jorgensen, D.P. 1984 Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmos. Sci. 41, 1268–1285.

    Article  ADS  Google Scholar 

  • Kurihara, Y. 1976 On the development of spiral bands in tropical cyclones. J. Atmos. Sci. 33, 940–958.

    Article  ADS  Google Scholar 

  • Kurihara, Y. and Tuleya, R.E. 1974 Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci. 31, 893–919.

    Article  ADS  Google Scholar 

  • Kurihara, Y., Bender, M.A., Tuleya, R.E. and Ross, R.J. 1990 Prediction experiments of Hurricane Gloria (1985) using a multiply nested movable mesh model. Mon. Wea. Rev. 118, 2185–2198.

    Article  ADS  Google Scholar 

  • Laing, A.G., and Fritsch, J.M. 1993 Mesoscale convective complexes in Africa. Mon. Wea. Rev. 121, 2234–2263.

    Article  ADS  Google Scholar 

  • Lemon, L.R. and Doswell, C.A. III, 1979 Severe thunderstorms evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev. 13, 1184–1197.

    Article  ADS  Google Scholar 

  • Lewellen, W.S. 1976 Theoretical models of the tornado vortex. Proc. Symp. on Tornadoes. Lubbock, Institute for Disaster Research, Texas Tech University, 107–143.

    Google Scholar 

  • Lilly, D.K. 1969 Tornado Dynamics. NCAR Manuscript 69–117.

    Google Scholar 

  • Lilly, D.K 1982 The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, eds. L. Bengtsson and J. Lighthill, Springer-Verlag.

    Google Scholar 

  • Lilly, D.K. 1986 The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci. 43, 126–140.

    Article  ADS  Google Scholar 

  • Love, G. 1985 Cross-equatorial influence of winter hemisphere subtropical cold surges. Mon. Wea. Rev. 113, 1487–1498.

    Article  ADS  Google Scholar 

  • Lumley, J.L. and Panofsky, H.A. 1964 The structure of atmospheric turbulence. John Wiley and Sons.

    Google Scholar 

  • Lyons, T.J., Schwerdtfeger, P., Hacker, J.M., Foster, I.J., Smith, R.C.G., and Xinmei, H. 1993 Land-atmosphere interaction in a semiarid region: The Bunny Fence Experiment. Bull. Amer. Meteor. Soc. 74, 1327–1334.

    Article  Google Scholar 

  • Mathur, M.B. 1974 A multi-grid primitive equation model to simulate the development of an asymmetric hurricane (Isabell, 1964). J. Atmos. Sci. 31, 371–393.

    Article  ADS  Google Scholar 

  • McCarthy, J., Wilson, J.W. and Fujita, T.T. 1982 The joint airport weather studies project. Bull. Amer. Meteor. Soc. 63, 15–22.

    Article  Google Scholar 

  • Mehta, K.C. 1976 Wind speed estimates: engineering analyses. Proc. Symp. on Tornadoes. Lubbock, Institute for Disaster Research, Texas Tech University, 107–143.

    Google Scholar 

  • Merrill, R.T. 1988 Characteristics of the upper-tropospheric environmental now around hurricanes. J. Atmos. Sci. 45, 1665–1677.

    Article  ADS  Google Scholar 

  • Moeng, C.-H. and Wyngaard, J.C. 1988 Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci. 45, 3573–3587.

    Article  ADS  Google Scholar 

  • Montgomery, M.T. and Farrell, B.F. 1992 Polar low dynamics. J. Atmos. Sci. 49, 2484–2505.

    Article  ADS  Google Scholar 

  • Montgomery, M.T. and Farrell, B.F. 1993 Tropical cyclone formation. J. Atmos. Sci. 50, 285–310.

    Article  ADS  Google Scholar 

  • Nicholls, M.E. and Pielke, R.A. 1993 Numerical modeling of airflow: Convectively explicit simulation of a hurricane. CSU/TTU Cooperative Program in Wind Engineering Report for technology assessment and advisory council. February 26-27, 1993, Lubbock, Texas.’

    Google Scholar 

  • Ooyama, K.V. 1969 Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 3–40.

    Article  ADS  Google Scholar 

  • Ooyama, K.V. 1982 Conceptual evaluation of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan 60, 369–380.

    Google Scholar 

  • Palmén, E. 1948 On the formation and structure of tropical hurricanes. Geophysics 3 26–38.

    Google Scholar 

  • Palmén, E. and Riehl, H. 1957 Budget of angular momentum and energy in tropical cyclones. J. Meteor. 14, 150–159.

    Article  Google Scholar 

  • Pielke, R.A. 1984 Mesoscale meteorological modeling. Academic Press.

    Google Scholar 

  • Pielke, R.A. 1990 Earth science: Atmospheric science -1989. Encyclopaedia Britannica Yearbook of Science and the Future, 310–315.

    Google Scholar 

  • Pielke, R.A., Garstang, M., Lindsey, C. and Gusdorf, J. 1987 Use of a synoptic classification scheme to define seasons. Theor. Appl. Climatol. 38, 57–68.

    Article  ADS  Google Scholar 

  • Powell, M.D. 1990 Boundary layer structure and dynamics in outer hurricane rain-bands. Part I. Mesoscale rainfall and kinematic structure. Part II. Downdraft modification and mixed layer recovery. Mon. Wea. Rev. 118, 891–938.

    Article  ADS  Google Scholar 

  • Reinhold, B. 1990 Orographic modulation of baroclinic instability. J. Atmos. Sci. 47, 1697–1712.

    Article  ADS  Google Scholar 

  • Riehl, H. 1948 On the formation of typhoons. J. Meteor. 5, 247–264.

    Article  Google Scholar 

  • Riehl, H. 1954 Tropical meteorology. McGraw-Hill.

    Google Scholar 

  • Rosenthal, S.L. 1978 Numerical simulation of tropical cyclone development with latent heat release by the resolvable scales I: Model description and preliminary results. J. Atmos. Sci. 35, 258–271.

    ADS  Google Scholar 

  • Rotunno, R. and Klemp, J.B. 1982 The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev. 42, 271–292.

    Google Scholar 

  • Rotunno, R. and Klemp, J.B. 1985 On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci. 42, 271–292.

    Article  ADS  Google Scholar 

  • Rotunno, R. and Emanuel, K.A. 1987 An air-sea interaction theory for tropical cyclones. J. Atmos. Sci. 44, 542–560.

    Article  ADS  Google Scholar 

  • Ryan, B.F., Barnes, G.M. and Zipser, E.J. 1992 A wide rainband in a developing tropical cyclone. Mon. Wea. Rev. 120, 431–447.

    Article  ADS  Google Scholar 

  • Schubert, W.H. and Hack, J.J. 1982 Inertial stability and tropical cyclone development. J. Atmos. Sci 39, 1687–1697.

    Article  ADS  Google Scholar 

  • Shapiro, L.J. 1983 The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci. 40, 1984–1998.

    Article  ADS  Google Scholar 

  • Shapiro, M.A. 1984 Meteorological tower measurements of a surface cold front. Mon. Wea. Rev. 112, 1634–1639.

    Article  ADS  Google Scholar 

  • Shapiro, L.J. and Willoughby, H.E. 1982 The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci. 39, 378–394.

    Article  ADS  Google Scholar 

  • Shea, D.J. and Gray, W.M. 1973 The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci. 30, 1544–1564.

    Article  ADS  Google Scholar 

  • Simpson, J., McCumber, M.C. and Golden, J.H. 1985 Tropical waterspouts and tornadoes. Preprints, 14th Conf. on Severe Local Storms Indianapolis, Amer. Meteor. Soc., 284–288.

    Google Scholar 

  • Smith, R.B. 1979 The influence of mountains on the atmosphere. Adv. Geophys. 21, 87–230.

    Article  ADS  Google Scholar 

  • Smolarkiewicz, P.K., Rasmussen, R.M. and Clark, T.L. 1988 On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci. 45, 1872–1905.

    Article  ADS  Google Scholar 

  • Tripoli, G.J. 1993 An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone. Meteor. Atmos. Phys. 49, 229–254.

    Article  Google Scholar 

  • Tuleya, R.E. 1988 A numerical study of the genesis of tropical storms observed during the FGGE year. Mon. Wea. Rev. 116, 1188–1208.

    Article  ADS  Google Scholar 

  • Walko, R.L. 1988a The plausibility of substantial dry adiabatic subsidence in a tornado core. J. Atmos. Sci. 45, 2251–2267.

    Article  ADS  Google Scholar 

  • Walko, R.L. 1988b A numerical comparison between atmospheric and laboratory endwall boundary layers in a tornado-like vortex. Preprints, l5th Conference on Severe Local Storms Baltimore, MD., Amer. Meteor. Soc., 327–330.

    Google Scholar 

  • Walko, R.L. 1993 Tornado spin-up beneath a convective cell: Required basic structure of the near-field boundary layer winds. The Tornado: Its Structure, Dynamics, Prediction, and Hazards. (eds. Church, C., Burgess, D., Dos well, C., Davies-Jones, R.) Geophysical Monograph 79, American Geophysical Union. 89–95.

    Chapter  Google Scholar 

  • Walko, R.L. and Gall, R.L. 1984 A two-dimensional linear stability analysis of the multiple vortex phenomenon. J. Atrnos. Sci. 41, 3456–3471.

    Article  ADS  Google Scholar 

  • Ward, N.B. 1972 The exploration of certain features of tornado dynamics using a laboratory model. J. Atrnos. Sci. 29, 1194–1204.

    Article  ADS  Google Scholar 

  • Wilczak, J.M., Christian, T.W., Wolfe, D.E., Zamora, R.J. and Stankov, B. 1992 Observations of a Colorado tornado. Part I: Mesoscale environment and tornadogenesis. Mon. Wea. Rev. 120, 497–520.

    Article  ADS  Google Scholar 

  • Williams, R.T. 1972 Quasi-geostrophic versus non-geostrophic frontogenesis. J. Atrnos. Sci. 29, 3–10.

    Article  ADS  Google Scholar 

  • Willough by, H.E. 1977 Inertia-buoyancy waves in hurricanes. J. Atmos. Sci. 34, 1028–1039.

    Article  ADS  Google Scholar 

  • Willoughby, H.E., Jin, H.-L., Lord, S.J. and Piotrowicz, J.M. 1984 Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model. J. Atmos. Sci. 41, 1169–1186.

    Article  ADS  Google Scholar 

  • Wilson, J.W., Roberts, R.D., Kessiner, C. and McCarthy, J. 1984 Microburst wind structure and evaluation of doppler radar for airport wind shear detection. J. Climate Appl. Meteor. 23, 898–915.

    Article  ADS  Google Scholar 

  • Wilson, T. and Rotunno, R. 1986 A numerical simulation of a laminar end-wall vortex and boundary layer. Phys. Fluids 29, 3993–4005.

    Article  ADS  Google Scholar 

  • Yamasaki, M. 1977 A preliminary experiment of the tropical cyclone without parameterizing the effects of cumulus convection. J. Meteor. Soc. Japan 55, 11–30.

    Google Scholar 

  • Zehr, R.M. 1992 Tropical cyclogenesis in the western North Pacific. NOAA technical report NESDIS 61, Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pielke, R.A. et al. (1995). Atmospheric Vortices. In: Green, S.I. (eds) Fluid Vortices. Fluid Mechanics and Its Applications, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0249-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0249-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4111-9

  • Online ISBN: 978-94-011-0249-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics